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Any software problem can be solved by adding another layer of indirection.
Steven M. Bellovin 
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Quantum computation is slow, expensive, and error-prone.  
By doing some of the work classically, we can lower the 

total cost of the computation. 
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To factor the n bit 
number N, we must 
evolve to hold:

Binary expansion of x : x n y 1 x n y 2 z{z{z x 0

Let d j | a 2 j

mod N
a x mod N }G~

j � 0

n � 1
d j

x j mod N

{{Divide x into l words of 
length w,   l = n/w
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1
q � j � 0

q � 1 �
a j mod N �

x n � 1 x n � 2 ... x 2w x 2w � 1 ... x w x w � 1 ... x 0
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Use part of superposition |x> as an index into a table.  

For Shor's algorithm1, the table contains classically 
computed parts of the modular exponentiation of a.  This 

allows us to reduce the number of multiplications 
necessary in the quantum domain by a factor of w, in 

exchange for 2w more classical multiplications. 
 will be index into array b.

�
t k x �

bm , k � a m2wk

mod NFor iteration k,

a x mod N ���
j � 0

l � 1
b t j x , j mod N

1
q � x � 0

q � 1 �
a x mod N  �¡ 1

q � x � 0

q � 1 �£¢
j � 0

l � 1
b t j x , j mod N  

Modular exponentiation is the 
dominant cost in Shor's algorithm.
n classical modular multiplications and 
n quantum modular multiplications are 
used in the standard method.
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Minimum cost depends on ratio of 
quantum to classical multiplication cost.  
Quantum cost must factor in repetitions of 
Shor's algorithm.
Curve can be used for different definitions 
of cost, e.g.,  economic, or wall clock time.
(Graph assumes zero QACM cost.)

Arguments by value: add 4,3    (zero levels of indirection)
Arguments by reference: add this, that    (one level of indirection)
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Pointers (memory addresses) and array indices are the most 
common forms of indirection.   Indirection saves space, allows 
sharing of objects, and allows data to be filled in later in the 
computation.
Indirection may be an arbitrary number of levels deep; we are 
using only one, for the moment.

The best implementation will use an array that holds classically-computed values, 
and allows a superposition of addresses to be used to retrieve a superposition of 
those values.  We call this a quantum-addressable classical memory (QACM)2.

b7, k b6, k b5, k b4, k b3, k b2, k b1, k b0, k

t 2, k

t 1, k

t 0, kt 0, k t 0, k t 0, k

t 1, k ªp«£¬®­�­�¯u°²±´³¶µ/·u¸º¹�»²¼½­}Address superposition used to steer
reader to appropriate data cells

Classical data cells

} Output superposition

d
j
 values are computed classically3.
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Q:C cost ratio

1000 6 64 4.3x
1.00E+006 13 8K 11.7x
1.00E+009 22 4M 20.2x
1.00E+012 31 2G 29.1x

Optimum w
Entries in b 

array
Cost 

reduction
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Å
­WË5ÌÍ­Barenco et al  showed that the 

probability of success with Shor's 
algorithm may be 10-5 for sizes of a 
few kilobits4.
When repeating the algorithm, the
classical parts can be saved and
reused.  The quantum portion of the 
exponentiation must be redone.
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Word length (w)

q:c cost 1e12:1
q:c cost 1e9:1

q:c cost 1,000,000:1
q:c cost 1,000:1

q:c cost 1:1

For the superposition |x>, this becomes

1) P. Shor, “Polynomial time algorithms for prime factorization and discrete logarithms on a 
quantum computer”, SIAM J. Comp., 1997.
2) M. Nielsen & I.  Chuang, Quantum Computation and Quantum Information, pp. 266—268,
Cambridge University Press, 2000.
3) N. Kunihiro, “Practical running time of factoring by quantum circuits”, EQIS 2003.
4) A. Barenco et al, “Approximate Fourier transform and decoherence”, PRA, 1996.

1) Initialize |product> to 1
2) Classically calculate initial b

j,0
 table values for all j, 0 <= j < 2w

3) For k from 0 to l-1, do
     a) In quantum domain, use |t

k
(x)> as index into b, 

         |c> = |b[|t
k
(x)>]>

     b)  multiply |product>  by  |c>, modulo N
     b) Update b array: classically multiply each element by itself
         (square it, modulo N)  w times to create b

j,k+1

We use |b[|t>]> to indicate the superposition retrieved from the array b by using |t> as  
the index.   Our QACM will need to hold 2w entries of n bits each to speed up modular 
exponentiation of an n bit number by a factor of w.

lw2w = n2w classical modular multiplications and 
l = n/w quantum multiplications
(compared to n classical and n quantum using standard algorithm)
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