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The recent discovery of the use of operator subspaces as a generalization of stabilizers for quantum
error correction (QEC) has provided a more flexible framework for the implementation of QEC.
We have analyzed implementation of one such code, the Bacon-Shor code, in a two-dimensional
memory layout where operations on one axis are substantially more expensive and error-prone that
on the other, such as node-local versus inter-node operations in a distributed system. By favoring
stabilizers that use local operations, rather than long-distance operations, we solve a key problem
in the implementation of a quantum multicomputer with code words spanning multiple nodes. We
also show efficient distributed creation of the cat states necessary for syndrome calculation. This
work improves the prospects for the use of very small nodes, holding only a few physical qubits each.

PACS numbers:

Hardware systems that can cleanly scale the number
of physical qubits in a single system are hard to build [1].
Thus, we have been investigating quantum multicomputer
architectures, in which a set of quantum computers are
connected via quantum channels into a system that can
solve problems that are beyond the reach of any individ-
ual quantum computer [2].

In prior work on fault tolerance in multicomputer
architectures, Van Meter et al. showed that Steane’s
method of measuring syndromes, which uses logical zero
states, is not well suited to quantum error correction on
distributed code words, and argued that individual mul-
ticomputer nodes therefore should contain complete log-
ical qubits [3]. Logical gates are performed by teleport-
ing complete logical qubits, then performing the gates
locally. Jiang et al. explored minimum-size nodes, us-
ing purification to insure the quality of distributed Bell
pairs; each node effectively holds a single data qubit and a
few ancillae [4]. The inter-node interconnect is treated as
the first-level qubit-to-qubit interconnect, for purposes of
calculating an error threshold and planning logical opera-
tions. The system proposed by Oi et al. falls in between,
holding a single, first-level logical qubit in each node [5].
The logical qubits do not move, and distributed zeros
built on ancillae are used to execute two-qubit gates.

Operator subspaces relax some of the constraints on
quantum error correction codes by recognizing that many
errors that can occur do not impact our ability to con-
tinue to use a particular state for quantum computa-
tion [6, 7]. Aliferis and Cross have shown that a qubit
encoded in the Shor nine-bit code can be protected using
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only nearest-neighbor interactions on a 2D lattice and
gauge bits along the edges of the lattice [8].

However, when using a multicomputer architecture,
the qubit-to-qubit interconnect is not fully symmetric:
interactions within a node are generally direct qubit-to-
qubit actions, governed by the node’s internal topology
and technology, but interactions between nodes are very
difficult, typically mediated by Bell pairs and teleporta-
tion operations. Our question then becomes how to lay
out the qubits to minimize the number of high-fidelity
Bell pairs that must be created using the inter-node in-
terconnect.

We find that the standard stabilizer set for a general-
ized Bacon-Shor code, of the form [[n2, 1, n]], works well
in a multicomputer, when cat states and Shor’s fault
tolerance method are used instead of logical zeros and
Steane’s method. A particularly elegant approach be-
comes apparent for n multicomputer nodes holding a sin-
gle logical qubit. Then, only O(n) distributed Bell pairs
are necessary for fault tolerant syndrome extraction and
error correction.

Writing stabilizers as a matrix with the jth column
corresponding to qubits in the jth node of the multicom-
puter, we use

Sx
ij = Xi,jXi+1,j Sz

j =

n∏

i=1

Zi,jZi,j+1 (1)

That is, paired pauli X operators within a given node,
and two columns of Z operators between adjacent nodes,
as illustrated in Fig. 1a. Measurement of Sx

ij is trivial
with good internal node operations. Our task is then
reduced to efficient measurement of the n − 1 paired-
column stabilizers, Sz

j .
For this Pauli operator on 2n qubits, we will use

Shor-type syndrome extraction. This operation requires
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FIG. 1: (a) Stabilizers for a [[n2, 1, n]] Bacon-Shor code, dis-
tributed between different multicomputer nodes (separation
indicated by the dashed lines). (b) A partial Bell measure-
ment (PBM) circuit using one entangled Bell pair, with result
±1 given by the product of the Z measurement results. (c)
Fault tolerant “patching” of two 4-qubit cat states. The result
is kept only when both PBM measurements give the same re-
sult. For PBM results of 1,1, we get the top GHZ state, while
-1,-1, gives the bottom.

preparing a 2n GHZ state of an ancillary system, followed
by pairwise controlled-not operation and measurement of
the ancillae. In a given node, we need n qubits for the
code word, n qubits for the cat state, and one additional
qubit for verification and entanglement generation.

Fault tolerance is achieved if this procedure does not
amplify errors: no single bit error, occurring with prob-
ability p, can produce a two-bit errors on the code-word
qubits. We choose a recursive approach to proving fault
tolerance, using ancilla-mediated partial Bell measure-
ments to verify the cat state against errors. In essence,
we can fault tolerantly “patch” two n cat states together
to a single cat state of size 2n. This operation requires
two partial Bell measurements (sequential or simultane-
ous), necessitating two Bell pairs be consumed for each
2n cat state needed.

Let us define the partial Bell measurement (PBM),
which will account for the entangling operations neces-
sary to “patch” two cat states together. The idea of

PBM is to projectively measure two qubits (one in each
smaller cat) in two orthogonal subspaces: one subspace

is spanned by the Bell states |Φ±〉 = (|00〉 ± |11〉) /
√

2,
and the other is spanned by the Bell states |Ψ±〉 =
(|01〉 ± |10〉) /

√
2.

We can achieve PBM by entanglement generation and
local operations. For distributed nodes (registers), we
implement PBM via the following procedure (shown in
Fig. 1b): (1) Prepare a high fidelity EPR pair shared
by the communication qubits from the two nodes, say
|Φ+〉C1,C2

. (2) Then apply local CNOT gate. (3) The two

storage qubits (S1 and S2) are projected to the subspace

spanned by the Bell states |Φ±〉 = (|00〉 ± |11〉) /
√

2 if
the measurement outcomes are the same, or they are
projected to the subspace spanned by the Bell states
|Ψ±〉 = (|01〉 ± |10〉) /

√
2 if the measurement outcomes

are different. (4) (Optional) For the latter case, we may
further flip one of the storage qubits, so that they are
projected to the subspace spanned by |Φ±〉.

More specifically, we assume we have fault tolerantly
prepared two cat states of size n/2, spanned by |0̄〉 ≡
|000 · · · 〉 and |1̄〉 ≡ |111 · · · 〉. Suppose we start with two
such blocks, prepared in |0̄〉

1
+ |1̄〉

1
and |0̄〉

2
+ |1̄〉

2
states,

respectively (i.e., two small GHZ/cat states). Each block
is associated with a communication qubit for entangle-
ment generation. We want to prepare a large GHZ state
|0̄〉

1
|0̄〉

2
+ |1̄〉

1
|1̄〉

2
fault tolerantly. We may achieve this

task by applying PBM twices as shown in Fig. 1c. The
fault-tolerance comes from the second (redundant) PBM.
Each PBM will indicate whether the upper qubits have
the same value as the lower ones. The indications from
two PBMs should be the same; otherwise there must be
something wrong. There are several sources that can lead
to the inconsistency: (1) There is a bit error in one of the
physical qubits connect to the PBM. (2) The EPR pair
|Φ+〉C1,C2

for one PBM has a bit-flip error. (3) The mea-
surement of the communication qubit within the PBM
has a mistake. If one of the above error occurs, it will
be detected by our double-PBM operation (Fig. 1c) [9].
The possibility for these errors to induce correlated er-
rors in the large GHZ state is suppressed to the second
order by the circuit.

This specific example illustrates our approach for min-
imizing the number of Bell pairs necessary between sep-
arated nodes in a quantum multicomputer. Generaliza-
tions of this approach to non-degenerate quantum codes
and concatenated codes remains an outstanding problem.
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