Establish fast quantum modular exponentiation algorithms to run
Shor's algorithm on various quantum computer architectures,
using the best available quantum and classical techniques. This
will support performance analysis of both architectures and
algorithms, benefiting near-term experimentation and long-term
research planning.

Speed is critical, and subject to:
@ clock speed * algorithm
In this work, we have concentrated on the latter two elements, understanding the
constraints of architecture and searching for the best algorithms to match each
architecture.

@ architecture

The three most important features of an architecture, in terms of its ability to run
algorithms efficiently, are:

° number of qubits

< the ability to run multiple gates concurrently

* the interconnect capability of the system: can gates happen between neighbors only,
or any arbitrary pair of qubits?

We use architectural descriptions with important features that help us understand

performance. AC supports long-distance gates, while NTC supports only operations
on nearest neighbors.

AC: Long-Distance Gates

Two frames from

an animation showing
long-distance gates

on an AC architecture.
O(log n) possible, depending
on algorithm.

ix-bit carry-select adder, AC architecture

NTC: 1D Layout, Neighbors Only

Swap Swap gate Swap gate Swap gate

Position first, then do action gates
Only 1 new neighbor after each swap
What's the performance penalty?
O(n) performance at best.

Taking Advantage of Space

The primary use of large amounts of space

is parallel multiplication.

Graph is execution latency (circuit depth)

for exponentiating 128 bits on an AC architecture,
for several different algorithms.

We use a variety of techniques to accelerate the basic computations in modular
exponentiation. Parallel multiplication is critical, and improvements in modulo
arithmetic and argument handling help.

Below we show one of the most important optimizations, a faster adder, and compare
it to the standard one.

Conditional-Sum Adder

T 198
s .
O(log n) latency when " EIT Tl}Tl
long-distance gates are free. o
. oS 1
O(n) when swap required fib Sep vy e
(NTC architecture) -- with 2 ul e
a big constant! 3 IR aEES!
fmasvusy T
1 \
Better use of concurrent N
gates (total still O(n) or o 1
larger). oy T
1o T T 1
(Carry-save and carry-lookahead 1] RS
are other types that reach O(log n). Ill 1 L Ill
See quant-ph/980806 1, quant-ph/0406142.)

Carry—Ripple Adder
O(n) latency on all architectures I; &1 T; } T 1

Carry ripples one bit at a timg T 1.1

(Can use concurrent gates here, but limited above)

(Variants used in both major exponentiation algorithms, \
VBE (quant-ph/9511018) and BCDP (quant-ph/9602016).) T

Algorithms that are up to 700 times faster than basic algorithms,
when 100n qubits of storage are available, for factoring a 128-bit
number. Our algorithms are O(n”2 log n) for nearest-neighbor
architectures, and O(n log”2 n) for long-distance-gate
architectures.

Latency for Mod Exp (128 bits)

ACgates perf TCgates perf NTCgates perf
VBE 1.25E+08 1 499E+08 1 8.32E+08 1
BCDP 4.96E+07 2.5 132E+08 3.7 4.64E+08 18

VBE (100n) 7.56E+06 16 3.03E+07 16 5.05E+07 17

BCDP (100n) 2.53E+06 49 6.71E+06 74 2.36E+07__35

A 2.65E+07__ 4.7 1.07E+08 4.7

B 3.71E+05 336 1.38E+06 360

C T22E+0 102 4.89E+06 102

D Z 57 N/A

E 171E+05 72 N/A

700x faster on AC,
100x faster on NTC!

Algorithms B, C, D, E, VBE(100n), BCDP(100n) use 100n storage;
others use 5n-7n
gates for AC are CCNOT, others are CNOT

Future Work

We are currently examining the full impact of clock speed, and have begun
investigations into different physical topologies and performing these algorithms
on fault-tolerant, error-corrected qubits.

To factor the n bit 1 g—1 i
number N, we must ~ ~ Z j=0 | a’ mod N >
evolve to hold: Ngq

Modular exponentiation is the
dominant cost in Shor's algorithm.

2n classical modular multiplications
and n quantum modular multiplications

are used in the standard method. Binary expansionof X 7 X, _ X _,..aX

Let d]=a2/m()d N
1/] values are computed classically’.

" n—1 x
a*modN:HFOd/.’modN

1) P. Shor, “Polynomial time algorithms for prime factorization and discrete logarithms on a
quantum computer”, SIAM J. Comp., 1997.

2) R. Van Meter and K. M. Itoh, “Fast Quantum Modular Exponentiation,” quant-ph/0408006.
3) V. Vedral et al.,, PRA, 1996 (VBE algo.).

4) D. Beckman et al., PRA, 1996 (BCDP algo.).

5) Fowler et al., QIC, 2004, quant-ph/0402196.

6) Draper et al., EQIS 2004, quant-ph/0406142.




