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Assume a Quantum Computer
[.Like This. ..
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I want to Build a Distributed

Quantum System Like This
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Repeater Protocol Stack

Application
Purification Control (PC)
} Repeated at

} End-to-End

Entang. Swapping Ctl (ESC) Different

Purification Control (PC) Distances

Entanglement Control (EC) } Distance="1
Physical Entanglement (PE) Only quantum!
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- Two types of quantum networks

- IPsec with QKD
- |Psec with QKD
- US & European efforts
- Open problems & plans

- Repeaters
- Basic concepts
- QOur recent results
- Open problems & plans
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Two Types of Quantum Networks N

Unentangled Entangled
Networks Networks

[Psec Gateway
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Quantum Key Distribution (QKD) N

- Creates a shared, random secret
between two nodes

- Uses physical effects to guarantee that key
has not been observed

- Requires authenticated classical channel
- Limited to <150km per hop
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IPsec with QKD
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SECOQC Prototype — principle layout

IdQuantique

Slide from
M. Peev, 2008
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A Trusted repeater QKD—Network: Abstract \gg

Architecture (SECOQC, Europe)

VPN-yello
' VPN-yellow

VPN-green
Site 1

Slide from

M. Peev, 2008
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QKD with IPsec Plans g@

- Test over raw fiber, Yagami<->K2

- Use key for one-time pad

- Work w/ NEC, BBN & ITU to standardize
- Write experimental |-D on IKE changes

- Take to IETF in Hiroshima?
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- Two types of quantum networks

- |IPsec with QKD
- [Psec with QKD
- US & European efforts
-+ Open problems & plans

. i
Repeaters A : / E\ B

- Basic concepts

|
- Our recent results \]/ H

- Open problems & plans
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Network Link Technology (Qubus) =X

millimeters to kilometers

ma - —
waveguide [
coherent
optical source transceiver transceiver
(laser) qubit in qubit in homodyne
node 1 node 2 detector
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Munro, Nemoto, Spiller, New J. Phys. 7, 137 (2005) as, KEIO 150
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Quantum Repeater Operation:

Entanglement Swapping N

Station Staton tation 2
WPy
% ) S\‘/}j ~C\Y ()
A
BeII State
Measurement

-— ——— —m —
Results must be communicated

Fidelity decreases; you must purify afterwards
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Nested Entanglement Swapping

Station O Station 1

level O

level 1

level 2
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Purification N
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Repeater Protocol Stack

Applicati
jelliez o End-to-End
Purification Control (PC) } Repeated at

Entang. Swapping Ctl (ESC]) Different
Distances
Purification Control (PC)

Entanglement Control (EC) } Distance=1

Physical Entanglement (PE) Only quantum!
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Four-Hop Protocol Interactions &<

Van Meter et al., IEEE/ACM Trans. on Networking, ™™ KEI0150
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The Repeater s Jobs

Entanglement swapping & purification, which
require:

- Alittle bit of quantum communication

- Quantum memory

- Local quantum operations
(gates & measurements)

- Lots of decision making
(both local and distributed)

- Lots of classical communication
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Entanglement Pumping

Ineffective w/ large fidelity difference
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Symmetric Purification

22

0.638

Problems:

Exact matching can
require long waits.
Not realistic when
memory effects
(decoherence)
considered.

Can deadlock if
resources are limited.
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Greedy Purification

0.638 Doesn’t wait for

anything, uses
whatever’s available.

Works well w/ large
number of qubits
per repeater.
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Banded Purification g@

0.638 Large gains in throughput.
' Moderate # qubits (5-50).
Avoids deadlock.

Realistic memory model.
Simple to implement in
real time (even in HW).
Probably not optimal,

but probably close.

Divide fidelity space
into multiple bands S
2.g., above & below 0.70 | SR



Banded Purification Performance g@
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Banded Purification Latency

) WO
(0] fdo X
K 1 ¢ (GGCN 3 \0? o ) .\)Q ]
S O QOO e
o QY- 4+
— (ST
8 0.1 C - X' _ e 1
17 | x p T e g ,‘-\\oe‘\
o ey
UC; 0.01 ¢ \oa(\d .- “ \a\e‘\
> _ ] '\O“QN\I
& o .g‘(\\
S 0.001 oot ‘-
T » 50

0.0001 : 1 . . , . | . .

2 4 8 16 32 64 128 256 512 1024
40 80 160 320 640 12802560 5K 10K 20K

Number of Hops (Total Distance) ‘EIO 150

26 Van Meter et al., IEEE/ACM Trans. on Networking, - e
Aug. 2009 (to appear), quant-ph:0705.4128




Protocol Design

o From Lower Layer in Protocol Stack
e: Falls below fidelity threshold

Purification Control (PC) Protocol State Machine v5

e: Passes Fidelity Threshold

s: Discard a: To Higher Layer in Protocol Stack
Entangled e: Picked for Sacrifice . )
r: PurifySuccess e: Destructive failure
o s: SacFail
To Uninitialized T a: abort locatBartner
ynaftrurine r: Abort
r: Purkail S: AbortACK To Uninitialized
e Picked SacrificeAttempt
for Purify e: Measured
- Abort orrun 5 T
< PurFail e: Purificajon Succeeds r- SacFail To Uninitialized
To Uninitialized s: PurifySufcess
e: Purificgtion Succeeds e: non-fatal P,
s: PurifySyiccess / HerHalfPurified To Uninitialized
s: AbortACK - r: ADORACK
e: Destructive failure
s: PurFail
a: abort local partner e: Destrugtive | e: local partner ) )
failure aborts r: SacFail
s: Purfail s: PurFail
To Uninitialized r: PurifySuccess
: g AbortWait r: PurFail
<% PurifyAttempt = fatal —>
rPurfail S~~~ fallure(eg local v “

partner fails)
s: Abort To Uninitialized
Notes:

MyHalfPurified sends a "PurFail" when it receives "Abort",
becausethey've crossed in the network.

"Discard" transitions not detailed. All states can discard,

send a "Discard" message, and go back to "Uninitialized"

(in EC layer). Epoch gets incremented, and all old msgs
discarded after that. "Abort" with an old epoch should

be responded to with "Discard", | think.

| think there are still one or two holes in the coordination between
the purifying and sacrificed partners.

r: PurifySuccess

Legend:

I: received message
e: local event

S: message sent

a: local action
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Simple: use Dijkstra’s Shortest Path First.
...but we don’t yet know the cost metric.
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A Different Meaning of

“Which Path?”
3 hops: ACGB

G
t)|< i | 4 hops: ACGHB
A\1<:§, ACEHB
D 4 H B

ADEF
ADFHB
5 hops: ACEHGB
ADEHGB
ADECGB
ADFHGB
6 hops: ACECGHB
7/ hops: ADFHECGB
ACEDCHGB ; KBIO 150
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But What is Distance? N

I G What if hops are not homogeneous?

|
N b, f—1—1—1—1
< ] I—t1—1-1
f—1—1 T—1
Are 27-1 hops, I—t—t—1—1
2"  hops, I—I I—I I
and 2"+1 hops T—1 ] ] ]
significantly different? ] ] 1 ]
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How Do We Order These®

- How does number of

inks matter? e = = ==
- _Dokes nu&nbgr of weak 1 e
inks matter =1 =1 =1

- Does position of weak I
iInk matter? I

- |s cost additive?

- At this logical level, I_} ] ] 1

IS this technology- I I I I
independent? IS S EESES
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Other Problems

- Defining swap points

- Static or dynamic? | el el el K |
- Avoiding leapfrog I I—I — I—I
- Avoiding deadlock I—I —I I —I
: I\/Iinimizing waits for I—I —I I I
classical messages I_I I _I ]
1—1 ] ] 1

f—1 ] ] ]

===t =1=1
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Other Problems

Station O Station 1 Station 2
. . 2 2 2
Partial messaging 0) e =) 3CB| =0 5
sequence B, oo [P, $c®

Can this be made
more efficient?

Due to memory
degradation, gains
will be better than
linear
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[Leapfrog

Station O A Station 2 Station 3
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Resource Management (QoS?) N

A<->B & C<->D /C'\ I\

want to talk.
A\ \ B
Remember, it's a I\I I/

distributed computation.
Worse, fragile guantum memory means there
IS a hard real time component.

==>requires circuit switching???
gbottleneck likely Is memory per node ). =™ x50




Open Repeater Problems

- Well, repeater HW doesn’t work yet...
- Sims of “weak links” mostly functional

- Establishing swapping points

- More dynamic behavior

- Non-power-of-two hops

- Finish & publish protocol state machine

(. =™ «E10 150
3 6 ) Design the Future



Open Complex Network Problems N

- Coding partially done
- Using graphviz file format
- Routing not done
- Workload generator needs work
- QoS / resource allocation not implemented
* Visualization of networks
- Investigate graph states & quantum network coding
- More detailed workload definition
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Milestones for JSPS

- Define a cost metric
(figure out if it's additive!)
- Define a path selection algorithm
- Define test cases
- Simulate that set of test cases
- Extend to topologically complex networks

- Create static visualizations
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Food for Thought

- When will first Science or Nature paper

appear using a quantum computer, but not
about the quantum computer?

- That is, when will a quantum computer do

science, rather than be science?

- Answers from quantum researchers range

39

from “less than five years” to “more than forty
years’
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AQUA: Advancing Quantum

Architecture
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