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Abstract— This paper quantifies the necessary movement of qubits in calculating the quan-
tum Fourier transform (QFT) used in Shor’s algorithm for factoring large composite numbers,
and proposes a distributed form of the QFT. We can reduce the number of gates in the quantum
Fourier transform by roughly 33% by moving from a linear array of qubits to a three-rail layout.
Next, we consider using multiple quantum computers (or, a quantum multicomputer) to execute
the QFT; the communications costs incurred are evaluated for several topologies. We find that
inter-device swaps are 1-5% of the intra-device swaps for kilobit-capacity systems.
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1 Introduction

Shor’s algorithm shows how to factor very large
numbers in polynomial time, with implications for
public-key cryptography [Sho94]. Naturally, with
public key syndromes in the range of kilobits, it
is desirable to execute Shor’s algorithm on multi-
kilobit numbers. However, no proposed quantum
computing technology has yet demonstrated the scal-
ability necessary to reach such large numbers. There-
fore, it makes sense to ask if we can combine multi-
ple quantum computers into a single, larger system:
a distributed-memory quantum multiprocessor, or
quantum multicomputer. In this paper, we examine
how a known algorithm can be run on such a system.

The heart of Shor’s algorithm is the use of the
quantum Fourier transform (QFT) in order-finding
problems, including factoring large numbers. We
concentrate on the full QFT, expecting it to be the
most demanding communication, or qubit movement,
task a quantum multicomputer might face. In the
full QFT, each qubit must interact with each other
qubit. In practice, an approximate QFT may be
used when the size of the problem is large, reduc-
ing the number of long-distance interactions neces-
sary [Cop94, BESTY6].

First, we examine the QFT assuming a mono-
lithic quantum computer consisting of a large num-
ber of qubits. Initially, we assume a linear array
of qubits, then analyze possible topological changes
to see what improvements might be made. While
the motion of qubits does not change the complex-
ity class of the algorithm, our results show that we

can reduce the number of swap gates in the quan-
tum Fourier transform by roughly 66%, and the to-
tal number of gates by 33%, by moving from a linear
array to a two-dimensional mesh.

Oskin’s proposed lattice layout [OCCKO3], which
is a realistically constrained version of Kane’s model
[Kan98], brings no benefits to the QFT compared to
the linear ring model. We propose that a two-rail
or three-rail structure, which appears to be feasi-
ble within Oskin’s engineering rules, be used, saving
25% or 33% of the total gate count, respectively.

These results suggest that pursuing quantum ar-
chitectures that support at least a partial 2-D qubit
layout will bring significant benefits.

Next, we consider using a quantum multicom-
puter to execute the QFT; the interconnect topol-
ogy required and the changes in the communications
costs relative to monolithic systems are detailed. We
find that inter-device swaps are 1-4% of the intra-
device swaps for large systems.

2 Counting Ops in the Quantum
Fourier Transform

In this section, we examine in detail the number
and types of quantum gates necessary to execute the
QFT. We classify the gates as “action” or “commu-
nication” gates. Only the former are part of the
actual value calculation; the communication gates
move qubits around so the calculations can be per-
formed. The communication gates, therefore, are
pure overhead, to be optimized or eliminated where
possible.



To calculate the QFT for I qubits, apply Hj in
reverse order from H;_; to Hy, and in between do all
R; i, for k > j, where H; is the one-qubit Hadamard
gate applied to the jth bit, and

R;j =™/ (1)

is the two-qubit gate on the |11) state of the des-
ignated pair of qubits j, k.

For example, in the quantum Fourier transform
for 4 bits, the necessary operations are (left to right):

H3Ry3HoR1 3Ry 2H 1 Ry 3Ro2Ro,1Hy (2)

The abstract form of the QFT manipulates pairs
of qubits that are far apart, logically. In the Lloyd
model operations can only take place on neighbor-
ing qubits, so swap gates are used to bring them
together as necessary [L1093].

The total cost of the QFT is therefore [ H gates,
Z;;llj =1(l - 1)/2 R gates, and a number of swap
gates dependent on the topology of the quantum
computer and the starting and ending layout of data
qubits.

The group of R; ) gates between each pair of H
gates commute. We can take advantage of this by
not maintaining the obvious, regular layout of qubits
in the system during the QFT calculation. We will
call this the “no return” policy.

Table 1 shows the gate counts necessary in the
QFT for some powers of two, both with return and
without. We will use the no return case as our base-
line for comparing the efficiency of various topolo-
gies.

3 Topology and Communication

In the previous section, swap gates were counted
assuming a linear structure. In this section, we in-
vestigate varying topologies.

It can be seen from table 1 that, in the linear
case, the communication gates (all swap gates) out-
number the action gates roughly two to one for the
return case, while in the no return case, the commu-
nication and computation costs are roughly equal.
Perfect optimization, eliminating all of the commu-
nication, would give us a factor of two (no return)
to three (return) improvement in total gate count.

3.1 Two-D Mesh

Let us next look at an extended two-dimensional
mesh, in which Manhattan neighbors can interact,
either swapping or performing two-qubit action gates,
as shown in the left side of figure 2.

For an N-dimensional mesh, nodes away from the
faces and edges have 2N links, of which one must be
the inbound link. The theoretical maximum, then,
is 2N — 1 new neighbors per swap, or 3 for a 2-D
mesh.
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Figure 1: Serpentine qubit layout and motion for 64
qubits (return, with communications channels)

Figure 2 shows several steps in the evolution of
the layout of a 32-bit system. Table 2 shows the
gate counts for an [ = 3 x m layout of qubits.

For physical systems with more square layouts
(e.g., m X p,m > p > 3), this three-rail layout may
be folded, using the edges as communications chan-
nels.

For the return case, a more square layout brings
significant additional reduction in total gate costs.
Figure 1 shows qubits laid out with spare sites used
as communication channels, expanding storage re-
quirements in exchange for reduced gate count.

3.2 Oskin Lattice

Kane proposed a solid-state nuclear spin device,
which uses standard VLSI techniques to control in-
dividual 3'P atoms embedded in the substrate, and
suggested that one- and two-dimensional layouts of
qubits may be possible [Kan98]. Oskin et al have
proposed a structure which is linear, with occasional
four-way intersections, based on engineering refine-
ments of the placement and wiring constraints in the
Kane model [OCCKO3]. The authors show how to
pack the classical control structures around a quan-
tum wire (a swap channel of qubits), and how to
create four-way intersections. Although their focus
is on long-distance wiring and buses, their design ap-
pears to suggest that packing the control structures
will preclude a full two-dimensional mesh. Figure 3
shows an extension of this approach to a multi-cell
layout in a larger lattice, which we will call the Os-
kin lattice.

This architecture clearly provides only a single
new neighbor per swap, except at the infrequent
junctions. Thus, the cost is the same the simple lin-
ear array for the no return case, and we have been
unable to find a bit layout that improves the return
case, as well.



1 H R return return | no return | no return
swap total swap total

16 16 120 210 346 105 241
64 64 2016 3906 5986 1953 4033
256 | 256 32640 64770 97666 32385 65281
1024 | 1024 | 523776 | 1045506 | 1570306 522753 1047553
4096 | 4096 | 8386560 | 16764930 | 25155586 8382465 | 16773121

Table 1: Gate counts for the quantum Fourier transform for length [ (linear Lloyd model)

1 H R swap total | % red. | % red. | swap %age
gates gates gates gates | in swap | in total | of rem. tot.

16 16 120 44 180 63.3 25.3 24.4
64 64 2016 692 2772 64.6 32.3 25.0
256 256 32640 10964 43860 66.2 32.8 25.0
1024 | 1024 | 523776 174932 699732 66.5 33.2 25.0
4096 | 4096 | 8386560 | 2796884 | 11187540 66.6 33.3 25.0

Table 2: Gate counts for the quantum Fourier transform (3 x m mesh, no return)
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Figure 2: Changes in Non-Return 32-bit Layout as
QFT Executes
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Figure 3: Lattice configuration (Oskin model).

Kane and Oskin have suggested placement of the
phosphorus atoms on a pitch of 15-100nm, depen-
dent on engineering tradeoffs; Oskin’s work assumes
an intermediate value of 60nm. With this wide vari-
ance in feature sizes and constraints, it seems likely
that the Oskin classical control constraints, speci-
fied for a line (wire), can be met in a layout of two
or three parallel lines. This will require three to
five times the control line density of a single swap
channel.

Using a simple data mapping to this layout results
in a 50% reduction in swaps for the two-rail case,
and, as we have seen, a 66% reduction for the three-
rail case.

As a simple extension to the two-rail layout, if
the qubits can be arranged to form a loop, a further
reduction in swap count is easily achieved for the
return case. This gives us a final reduction of 5/8 in
the swap gate count, a 42% reduction in total gate
cost for the QFT. This may be the sweet spot in
engineering tradeoffs of difficulty of implementation
versus functionality.



4 Distributing the Function

We now shift our attention to mapping the QFT
to a quantum multicomputer. We usually refer to
each of the quantum computing units as a segment,
reserving the term node for the graph theory discus-
sion of individual qubits. We assume each segment
is a Lloyd-model device, as above.

4.1 Segment Input/Output

To build a quantum multicomputer, we need to
transfer qubits among the QC segments. In this
section we are not referring to classical data input,
such as the number to be factored; that is usually
“input” into the computer via single-qubit gates on
the initial |0) state. Likewise, the final output, or
measurement, can be achieved in parallel for some
technologies, without moving qubits to specific I/O
locations in the computer.

Depending on the physical implementation of a
quantum computer (or computing segment), it is
possible to imagine a variety of qubit input and out-
put mechanisms and layouts. It may be possible to
transfer qubits out only one or both ends, or out
of any qubit. Similarly, if the segments are two-
dimensional grids, qubits may be input or output
from one or more edges, or from the face. Lloyd’s
proposal is that input and output take place only at
the corners.

We are now faced with a two-level interconnect
topology problem. The internal topology of each
segment, plus its input/output capabilities, impact
the interconnection of the segments. For this paper,
we will concentrate on the one- and two-dimensional
Lloyd models, with I/O at the ends and corners,
respectively.

4.2 Connecting 1D Segments

Under the constraints above, linear segments can
only be connected in a line or a ring. For s segments
holding n = /s data qubits each, arranged linearly,
we map the qubits directly onto the segments as if
the whole system were a single linear array. Some
of the swaps become inter-segment swaps, which
are more expensive and more error-prone. With no
buffer space around the data qubits, the number of
swaps would be exactly the same as in the single
linear array. However, we put a spare buffer qubit
onto one end of each segment; otherwise it would be
difficult to bring neighboring ends of segments to-
gether to perform the action gates. This results in
the number of intra-segment swaps being the same
as our original total, with the inter-segment swaps
being extra.

The number of inter-segment, swaps is

s—1

nY i=n(s)(s—1)/2=1(s-1)/2  (3)

i=1

1| segs | qubits/seg intra inter

8 2 4 42 4

8 4 2 42 12

16 4 4 105 24
1024 2 512 | 522753 512
1024 8 128 | 522753 3584
4096 4 1024 | 8382465 6144
4096 16 256 | 8382465 | 30720
4096 64 64 | 8382465 | 129024

Table 3: Swap gate counts for the linear distributed-
memory quantum Fourier transform (no return)

1| segs | qubits/seg intra inter

8 2 4 11 4

8 4 2 11 12

16 4 4 44 24
1024 2 512 174932 512
1024 8 128 174932 3584
4096 4 1024 | 2796884 6144
4096 16 256 | 2796884 | 30720
4096 64 64 | 2796884 | 129024

Table 4: Swap gate counts for the 3 x m distributed-
memory quantum Fourier transform (no return)

The number of inter-segment swaps grows linearly
with s, for a fixed [. The exact numbers for some
configurations are shown in table 3.

For the larger configurations, the inter-segment
swaps are less than 1.6% of the intra-segment swap
count. This suggests that there is room for inter-
segment swaps to be significantly slower and more
error-prone than intra-segment swaps without dra-
matically affecting either the run time or the relia-
bility of the computation.

As in the monolithic device, connecting in a ring
can eliminate roughly 1/4 of the swaps, both intra-
and inter-segment, for the return case.

4.3 Connecting 2D Rails and Meshes

Two- and three-rail devices, with I/O at the ends,
can be connected in several configurations, the sim-
plest being a linear one, as in figure 4. Table 4 shows
the inter-segment swap gate count for this configu-
ration. In the last line, the inter-segment swaps are
4.6% of the intra-segment swaps; the inter-segment
number is the same as in table 3, but the intra-
segment numbers have declined.

Figure 5 shows one of the many possibilities for
interconnecting sections of larger 2D mesh. For this
simple chain of meshes, each of s meshes holds n =
l/s logical qubits. Assuming n = hw, with h and w
both integers, the basic analysis is the same as for a
two-dimensional mesh h by sw. The figure shows a
detail of a 2D mesh chain, with a vertical serpentine
bit layout, for a return policy. The storage require-
ments are (3/2)w * (h + 2) for each mesh. To reach



the close-to-square minimum overall configuration,
we would like to have (h + 2) ~ (3/2)sw.

5 Related Work

The Lloyd model [L1093] offers 1, 2, and 3-D meshes,

though the paper talks primarily about a linear ar-
ray with bits going in one end. DiVincenzo et al pro-
pose a two-dimensional layout of solid-state qubits
[DBK*00].

Early suggestions of distributed quantum compu-
tation include Grover [Gro97], Cirac [CEHM98], and
Steane [SLOO].

Cleve and Watrous have shown that the QFT can
be calculated using integer multiplication, reducing
the asymptotic running time to O(n log® n loglogn)
[CWO00]. However, the high constant factors mean
that the actual circuit size is larger for the problem
sizes we present in this paper.

Yimsiriwattana and Lomonaco have presented a
distributed version of Shor’s algorithm [YLO04]. Their
approach uses entanglement to execute non-local op-
erations, whereas our approach moves the qubits to-
gether before performing the operation.

6 Future Work

We have analyzed other two- and three-dimensional

topologies, including the Copsey tree structure [COM*03],

for which there isn’t room in this paper. More de-
tailed analysis of engineering constraints specific to
certain quantum computing technologies is under
way.

We are currently extending this analysis to the
rest of Shor’s algorithm, especially modular expo-
nentiation, which is the most computationally de-
manding portion of the algorithm. We are also work-
ing to make the cost functions for gates implemented
in various technologies more realistic, including both
primitive gate times and error correction.

We are currently studying the feasibility of two-
dimensional layout and distributed computing in an
all-silicon NMR device [LGY102].

Perhaps the most important problem to be solved
is reliable inter-segment swap. The no-cloning the-
orem states that a perfect, independent copy of an
arbitrary, unknown quantum state cannot be made.
Thus, the usual networking approach of copy, buffer,
transmit, retransmit on error cannot be used.

7 Conclusions

This work is part of an effort to determine the ne-
cessity and viability of a quantum multicomputer,
with the ultimate goal of solving the practical system-
level engineering issues in scaling up a quantum com-
puter. We have investigated mapping the quantum
Fourier transform (QFT) to both a monolithic quan-
tum computer and a quantum multicomputer.

We have shown that the internal connection topol-
ogy of a quantum computer has a significant impact
on the number of quantum gates that must be exe-
cuted to run the quantum Fourier transform.

In the linear Lloyd model, roughly half of the
gates are swap gates used solely for communication.
A 3 x m two-dimensional grid can eliminate almost
two-thirds of the swap gates, for an aggregate sav-
ings of one-third of the total gates. We believe this
layout is potentially achievable under the Oskin en-
gineering constraints.

We have also done an analysis of a distributed-
memory quantum computer, concluding that the more
expensive and error-prone inter-segment qubit swaps
are from less than 1% up to about 5% of the total
for large systems.
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