
Distributed Arithmetic on a Quantum Multicomputer

Rodney Van Meter
Keio University and CREST-JST

3-14-1 Hiyoushi, Kohoku-ku
Yokohama-shi, Kanagawa 223-8522, Japan

rdv@tera.ics.keio.ac.jp

W. J. Munro
Hewlett-Packard Laboratories

Filton Road, Stoke Gifford
Bristol BS34 8QZ, United Kingdom

bill.munro@hp.com

Kae Nemoto
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo 101-8430, Japan
nemoto@nii.ac.jp

Kohei M. Itoh
Keio University and CREST-JST

3-14-1 Hiyoushi, Kohoku-ku
Yokohama-shi, Kanagawa 223-8522, Japan

kitoh@appi.keio.ac.jp

Abstract

We evaluate the performance of quantum arithmetic al-
gorithms run on a distributed quantum computer (a quan-
tum multicomputer). We vary the node capacity and I/O
capabilities, and the network topology. The tradeoff of
choosing between gates executed remotely, through “tele-
ported gates” on entangled pairs of qubits (telegate), ver-
sus exchanging the relevant qubits via quantum teleporta-
tion, then executing the algorithm using local gates (tele-
data), is examined. We show that the teledata approach
performs better, and that carry-ripple adders perform well
when the teleportation block is decomposed so that the key
quantum operations can be parallelized. A node size of
only a few logical qubits performs adequately provided that
the nodes have two transceiver qubits. A linear network
topology performs acceptably for a broad range of system
sizes and performance parameters. We therefore recom-
mend pursuing small, high-I/O bandwidth nodes and a sim-
ple network. Such a machine will run Shor’s algorithm for
factoring large numbers efficiently.

1 Introduction

We are investigating the design of a quantum multicom-
puter, a machine consisting of many small quantum com-
puters connected together to cooperatively solve a single
problem. Such a system may overcome the limited ca-
pacity of quantum computing technologies expected to be
available in the near term, scaling to levels which dra-
matically outperform classical computers on some prob-

lems [42, 44, 23, 16].
The first question in considering a multicomputer is

whether the system performance will be acceptable if the
implementation problems can be solved. We focus on dis-
tributed implementation of three types of arithmetic circuits
derived from known classical adder circuits [57, 15, 18, 19].
For many algorithms, notably Shor’s algorithm for factor-
ing large numbers, arithmetic is an important component,
and integer addition is at its core [44, 54]. Our evaluation
criterion is the latency to complete the addition. The goal
is to achieve “reasonable” performance for Shor’s factoring
algorithm for numbers up to a thousand bits.

Our distributed quantum computer creates a shared
quantum state between the separate nodes of our machine.
As we perform our computation, this quantum state evolves
and we are dependent on either quantum teleportation of
quantum data (called qubits), or teleportation-based remote
execution of quantum gates [8, 22]; we present teleporta-
tion in more detail in section 2.2, and discuss the tradeoff
throughout this paper.

The nodes of the machine may be connected in a variety
of topologies, which will influence the efficiency of the al-
gorithm. We concentrate on only three topologies (shared
bus, line, and fully connected) and two additional variants
(2bus, 2fully), constraining our engineering design space
and deferring more complex topology analysis for future
work. Our analysis is done attempting to minimize the re-
quired number of qubits in a node while retaining reason-
able performance; we investigate node sizes of one to five
logical qubits per node.

In this research we show that:

• teleporting data is better than teleporting gates;

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

• decomposition of teleportation brings big benefits in
performance, making a carry-ripple adder effective
even for large problems;

• a linear topology is an adequate network for the fore-
seeable future; and

• small nodes (only a few logical qubits) perform accept-
ably, but I/O bandwidth is critical.

A multicomputer built around these principles and based on
solid-state qubit technology will perform well on Shor’s al-
gorithm. These results collectively represent a large step in
the design and performance analysis of distributed quantum
computation.

We begin at the foundations, including related work and
definitions of some of the terms we have used in this in-
troduction. Next, we discuss our node and interconnect ar-
chitectures, followed by mapping the arithmetic algorithms
to our system. Performance estimates are progressively re-
fined, including showing how decomposing the teleporta-
tion operation makes the performance of the CDKM carry-
ripple adder competitive with the nominally faster carry-
lookahead adder. We conclude with specific recommen-
dations for a medium-term goal of a modest-size quantum
multicomputer.

2 Foundations

A quantum computer is a machine that uses quantum me-
chanical effects to achieve potentially large reductions in the
computational complexity of certain tasks [42, 44, 23, 16].
Quantum computers exist, but are slow, very small (consist-
ing of only a few quantum bits, or qubits), not reliable, and
have very limited scalability [56, 25]. True architectural re-
search for a large-scale quantum computer can be said to
have only just begun [55, 43, 14, 29, 49, 31, 4, 53, 54].

Classically, the best known algorithm for factoring large
numbers is O(e(nk log2 n)1/3

), where n is the length of
the number, in bits, and k = 64

9 log 2, whereas Shor’s
quantum factoring algorithm is polynomial (O(n3) or bet-
ter) [32, 44, 54]. These gains are achieved by taking advan-
tage of superposition (a quantum being in a weighted com-
bination of states, rather than the single state that is possi-
ble classically), entanglement (loosely speaking, the state of
two quanta not being independent), and interference of the
quantum wave functions (analogous to interference in clas-
sical wave mechanics). Of these, only entanglement of pairs
of qubits, as the core of quantum teleportation, is directly
relevant to this paper. Otherwise, only a limited familiarity
with quantum computing is required to understand this pa-
per, and we introduce the necessary terminology and back-
ground in this section. Readers interested in more depth are

referred to popular [41, 59] and technical [42, 46] texts on
the subject.

Teleportation of quantum states (qubits, or quantum
data) has been known for more than a decade [8]. It has been
demonstrated experimentally [21, 9], and has been sug-
gested as being necessary for moving data long distances
within a single quantum computer [43]. Teleportation con-
sumes Einstein-Podolsky-Rosen pairs, or EPR pairs. EPR
pairs are pairs of particles or qubits which are entangled
so that actions on one affect the state of the other. EPR
pairs can be created in a variety of ways, including reactions
that simultaneously emit pairs of photons whose character-
istics are related and many quantum gates on two qubits.
Entanglement is a continuous, not discrete, phenomenon,
and several weakly entangled pairs can be used to make one
strongly entangled pair using a process known as purifica-
tion [12].

Quantum bits, or qubits, have two basis states, corre-
sponding to the zero and one states of a classical bit. These
two states are written using Dirac’s ket notation in the form
|0〉 and |1〉.

2.1 Qubus Entanglement Protocol

Our approach to creating EPR pairs contains no direct
qubit-qubit interactions and does not require the use of sin-
gle photons, instead using laser or microwave pulses as a
probe beam [40, 38]. Two qubits are entangled indirectly
through the interaction of the qubits with a common quan-
tum field mode created by the probe beam – a continuous
quantum variable – which can be thought of as a quantum
communication bus, or “qubus” [47]. We call this process
the qubus entanglement protocol, or QEP.

By interacting the probe beam with the qubit, the probe
beam picks up a θ phase shift if it is in one basis state (e.g.,
|0〉) and a −θ phase shift if it is in the other (e.g., |1〉). If
the same probe beam interacts with two qubits, it is straight-
forward to see that the probe beam acting on the two-qubit
states |0〉|1〉 and |1〉|0〉 picks up no net phase shift because
the opposite-sign shifts cancel, while the probe beam act-
ing on the states |0〉|0〉 and |1〉|1〉 picks up phase shift ±2θ.
An appropiate measurement determines whether the probe
beam has been phase shifted (in effect taking the absolute
value of the shift), projecting the qubits into either an even
parity state or an odd parity state. The measurement shows
only the parity of the qubits, not the actual values, leaving
them in an entangled state. This state can be then used as
our EPR pair.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

X Z

H

Node A

Node B
QEP

|A>

|A>

time

H

X Z

H H

H

H

Z

X X

|t0>
Node A

Node B
|t1>

QEP

|0>

|A>

|B>

|0>

|A+B>

|A>

time

Figure 1. A teleportation circuit (top) and tele-
ported control-NOT (CNOT) gate (bottom).
Time flows left to right, each horizontal line
represents a qubit, and each vertical line seg-
ment with terminals is a quantum gate. A
segment with a ⊕ terminal is a control-NOT
(CNOT) gate. The “meter” box is measure-
ment of a qubit’s state, and the double line
extending from it is the classical result of that
measurement. The boxes with H, X, and Z in
them are various qubit gates. The large box
labeled QEP is the qubus EPR pair generator.
(See Nielsen and Chuang for more details on
the notation [42].)

= =

Figure 2. CCNOT (control-control-NOT, or
Toffoli) gate constructions for our architec-
tures.The leftmost object is the canonical
representation of this three-qubit gate. The
rightmost construction we use for the line
topology; the middle construction we use for
all other topologies. The box with the bar
on the right represents the square root of X
(NOT) (half a NOT gate, effectively), and the
box with the bar on the left its adjoint. The
last gate in the rightmost construction is a
SWAP gate, which exchanges the state of two
qubits.

2.2 Teleporting Gates and Teleporting
Data

To teleport a qubit, one member of the EPR pair is held
by the teleportation sender, and the other by the teleporta-
tion receiver. The qubit to be teleported is entangled with
the local EPR member, then both of those are measured,
which will return a classical 0 or 1 for each qubit and de-
stroy the qubit. The results of this measurement are trans-
mitted to the receiver, which then executes gates locally on
its member of the EPR pair, conditional on the measure-
ment results, recreating the (now destroyed) original state
at the destination. The circuit for teleportation is shown in
figure 1.

Gottesman and Chuang showed that teleportation can be
used to construct a control-NOT (CNOT) gate [22]. Their
original teleported gate requires two EPR pairs. We use an
approach based on parity gates that consumes only one EPR
pair, as shown in the bottom half of figure 1 [38]. Locally,
the parity gates can be implemented with two CNOT gates
and a measurement (outlined with dotted lines in the figure).
Double lines are classical values that are the output of the
measurements; when used as a control line, we decide clas-
sically whether or not to execute the quantum gate, based
on the measurement value. The last gate involves classical
communication of the measurement result between nodes
(where the vertical line segment crosses the dashed line be-
tween nodes A and B). As shown, this construction is not
fault tolerant; it must be built over fault-tolerant gates. Al-
ternatively, the qubus approach can be used as the node-
internal interconnect. Its natural gate is the parity gate, and
is fault tolerant.

In designing algorithms for our quantum multicomputer,
therefore, we have a choice: when two qubits in different
nodes of our multicomputer are required to interact, we can
either move data (qubits) from one node to another, then
perform the shared gate, or we can use a teleported gate di-
rectly on the qubits, without moving them. We will call the
data-moving approach teledata and the teleportation-based
gate approach telegate.

For some algorithms, we can use a simple, visual ap-
proach to counting the number of remote operations neces-
sary to execute the algorithm using either the teledata or tel-
egate approach (see section 4). For most quantum comput-
ing technologies, the three-qubit Toffoli (control-control-
NOT) gate must be constructed from two-qubit gates, as
shown in figure 2. For the telegate approach, we assign a
cost of three to each two-node Toffoli gate, and each three-
node Toffoli gate we count as five [54]. The three-node
Toffoli gate should cost more, but pipelining of operations
across multiple nodes hides the additional latency. We as-
sign two-node CNOT gates a cost of one.1

1There are other possible compositions of the Toffoli gate, but the dif-

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

2.3 Distributed Quantum Computation

Early suggestions of distributed quantum computation
include Grover [24], Cirac et al. [12], and Steane and Lu-
cas [50]. A recent paper has proposed combining the cluster
state model with distributed computation [33]. Such a dis-
tributed system generally requires the capability of transfer-
ring qubit state from one physical representation to another,
such as nuclear spin ↔ electron spin ↔ photon [37, 26, 11].

Yepez distinguished between distributed computation
using entanglement between nodes, which he called type
I, and without inter-node entanglement (i.e., classical com-
munication only), which he called type II [61]. Our quan-
tum multicomputer is a type I quantum computer. Jozsa and
Linden showed that Shor’s algorithm requires entanglement
across the full set of qubits, so a type II quantum computer
cannot achieve exponential speedup [28, 34]. Much of the
work on our multicomputer involves creation and manage-
ment of that shared entanglement.

Yimsiriwattana and Lomonaco have discussed a dis-
tributed version of Shor’s algorithm [62], based on one form
of the Beckman-Chari-Devabhaktuni-Preskill modular ex-
ponentiation algorithm [6]. The form they use depends on
complex individual gates, with many control variables, in-
ducing a large performance penalty compared to using only
two- and three-qubit gates. Their approach is similar to our
telegate (sec. 2.2), which we show to be slower than tele-
data. They do not consider differences in network topology,
and analyze only circuit complexity, not depth (time perfor-
mance), whereas our focus is on circuit depth.

3 Node and Interconnect Architecture

A multicomputer [3] is a constrained form of distributed
system. All parts of the system are geographically colo-
cated. Short travel distances (up to a few tens of meters)
between nodes reduce latency, simplify coordinated control
of the system, and increase signal fidelity. We assume a reg-
ular network topology, a dedicated network environment,
and scalability to thousands of nodes. We concentrate on a
homogeneous node technology based on solid-state qubits,
with a qubus interconnect, though our results apply to es-
sentially any choice of node and interconnect technologies,
such as ion trap nodes and single photon-based qubit trans-
fer [29, 53, 13, 58, 36].

Future, larger quantum computers will be built on tech-
nologies that are inherently limited in the number of qubits
that can be incorporated into a single device [42, 46, 1].
The causes of these limitations vary with the specific tech-
nology, and in most cases are poorly understood, but may

ferences are less than a factor of two, and which approach is best will de-
pend on the choice of quantum error correction (QEC), as some are more
difficult to implement on encoded qubits [5, 17].

range from the low tens to perhaps thousands; integration
of the densities we are accustomed to in the classical world
is not even being seriously discussed for most technologies.
Quantum error correction naturally reduces the number of
available logical (application-level) qubits by a large fac-
tor [45, 10, 48]. As with classical error correction codes,
multiple levels of error correction are possible, and often re-
quired. Two levels of the Steane 7-qubit code, for example,
which encodes a single logical qubit in seven lower-layer
qubits, would impose a 49:1 encoding and storage penalty.
Therefore, it makes sense to examine the utility of a device
that can hold only a few logical qubits.

We choose a node technology based on solid-
state qubits, such as Josephson-junction superconducting
qubits [39, 58, 27] or quantum dots [20], which will require
a microwave qubus. Each node has many qubits which are
private to the node, and a few transceiver qubits that can
communicate with the outside world. Node size is limited
by the number of elements that can practically be built into
a single device, including control structures, external sig-
nalling, packaging, cooling, and shielding constraints.

Throughout this paper, qubits and operations on them are
understood to be logical; whether the physical interconnect
links and transceiver qubits are parallel or serial remains
to be determined, in part by the demands of quantum error
correction. Although the QEP protocol in theory supports
EPR pair creation over many kilometers, our design goal
is a scalable quantum computer in one location (such as a
single lab). We consider a 10nsec classical communication
latency, corresponding roughly to 2 meters between nodes.
The performance figures we find are insensitive to this num-
ber.

We consider five interconnect networks: shared bus, line
of nodes, fully connected, two-transceiver bus (2bus), and
two-transceiver fully connected (2fully) as in figure 3. For
the shared bus, all nodes are connected to a single bus. Any
two nodes may use the bus to communicate, but it supports
only a single transaction at a time. In the line topology,
each node uses two transceiver qubits, one to connect to
its left-hand neighbor and one to connect to its right-hand
neighbor. Each link operates independently, and all links
can be utilized at the same time, depending on the algo-
rithm; multi-hop transfers are accomplished via store and
forward. For the fully-connected network, each node has
a single transceiver qubit which can connect to any other
node without penalty via some form of classical switched
network, though of course each transceiver qubit can be in-
volved in only one transaction at a time. 2bus and 2fully
utilize two transceiver qubits per node for concurrent trans-
fers.

The effective topology may be different from the physi-
cal topology, depending on the details of a bus transaction.
For example, even if the physical topology is a bus, the sys-

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

Figure 3. The five physical topologies ana-
lyzed in this paper.

tem may behave as if it is fully connected if the actions
internal to a node to complete a bus transaction are much
longer than the activities on the bus itself, allowing the bus
to be reallocated quickly to another transaction. Some tech-
nologies may support frequency division multiplexing on
the bus, allowing multiple concurrent transactions.

4 Algorithm

We evaluate three different addition algorithms:
the Vedral-Barenco-Ekert (VBE) style of carry-ripple
adder, which was the first type of quantum adder
described [57], the faster, smaller Cuccaro-Draper-
Kutin-Moulton (CDKM) carry-ripple adder [15], and the
carry-lookahead adder [18]. Both carry-ripple and carry-
lookahead adders are O(n) in complexity to add two n-bit
numbers, but they differ in their circuit depth, or latency to
complete the addition. Carry-ripple is O(n) latency, while
carry-lookahead is O(log n). In this section we discuss
the adders without regard to the network topology; the
following section presents numeric values for different
topologies and gate timings.

4.1 Carry-Ripple Adders

Figure 4 shows a two-qubit VBE carry-ripple adder [57]
in its monolithic (left) and distributed (right) forms. The
QEP block creates an EPR pair. The dashed boxes delin-
eate the teleportation circuit, which is assumed to be per-
fect. The first teleportation moves the qubit c0 from node
A to node B. c0 is used in computation at node B, then

A0

B0

C0

A1

B1

C1

A2

B2

C2

A3

B3

C3

A4

B4

C4

A5

B5

K

10 20

Node B

Node C

Node A

Figure 5. Visual approach to determining rel-
ative cost of teleporting data versus teleport-
ing gates for a VBE adder. The upper, dashed
(red) line shows the division between two
nodes (A and B) using data teleportation. The
circles show where the algorithm will need to
teleport data. The lower, dotted line (blue)
shows the division using gate teleportation
(nodes B and C). The circles show where tele-
ported gates must occur. Note that two of
these three are CCNOT gates, which may en-
tail multiple two-qubit gates in actual imple-
mentation. The numbers at the top are clock
cycles.

moved back to node A via a similar teleportation to com-
plete the computation. The two qubits t0 and t1 are used as
transceiver qubits, and are reinitialized as part of the QEP
subcircuit.

Figure 5 shows a larger VBE adder circuit and illustrates
a visual method for comparing telegate and teledata. For tel-
egate, we can draw a line across the circuit, with the number
of gates (vertical line segments) crossed showing our cost.
For teledata, the line must not cross gates, instead crossing
the qubit lines. The number of such crossings is the num-
ber of teleportations required. This approach works well
for analyzing the VBE and CDKM adders, but care must be
taken with the carry-lookahead adder, because it uses long-
distance gates that may be between e.g. nodes 1 and 3.

The VBE adder latency to add two numbers on an m-
node machine using the teledata method is 2m − 2 tele-
portations plus the circuit cost. For the telegate approach,
we must use a five-gate breakdown for CCNOT, requiring
three teleported two-qubit gates to form a CCNOT. There-
fore, implementing telegate, the latency is 7m−7 gate tele-
portations, or 3.5x the cost.

For the CDKM carry-ripple adder [15], which more ag-
gressively reuses data space, teledata requires a minimum of
six movements, whereas telegate requires two CCNOTs and
three CNOTs, or a total of nine two-qubit gates, as shown

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

X Z

ZX

H

H

|a0>
|b0>
|c0>
|a1>
|b1>
|c1>

|a0>
|b0>
|c0>
|t0>

|c1>
|b1>
|a1>

|c0copy>
|t1>

time

QEP QEP
Node B

Node A

time

Figure 4. Details of a distributed 2-qubit VBE adder. The right-hand circuit is the distributed form
using the teledata method; the left-hand circuit is the monolithic equivalent. The solid box (QEP)
is the qubus EPR pair generator; the circuits in dashed boxes are standard quantum teleportation
circuits.

B0

A0

T

B1

A1

B2

A2

B3

A3

B4

A4

B5

A5

COUT

10

Figure 6. Visual approach to determining rel-
ative cost of teleporting data versus teleport-
ing gates for a CDKM adder. Note that two
of the five teleported gates are CCNOT gates,
which may entail multiple two-qubit gates in
actual implementation.

in figure 6. The CDKM adder pipelines extremely well, so
the actual latency penalty for more than two nodes is only
2m+2 data teleportations, or 6m gate teleportations, when
there is no contention for the inter-node links, as in our line
and fully-connected topologies. The bus topology perfor-
mance is limited by contention for access to the intercon-
nect.

4.2 Carry Lookahead

Analyzing the carry-lookahead adder is more complex,
as its structure is not regular, but grows more intertwined
toward the middle bits. Gate scheduling is also variable,

and the required concurrency level is high. The latency is
O(log n), making it one of the fastest forms of adder for
large numbers [18, 54, 19].

Let us look at the performance in a monolithic quantum
computer, for n a power of two. Based on table 1 from
Draper et al. [18], for n = 2k, the circuit depth of 4k + 3
Toffoli gates is 19, 31, and 43 Toffoli gates, for 16, 128,
and 1,024 bits, respectively. We assume a straightforward
mapping of the circuit to the distributed architecture. We
assign most nodes four logical qubits (Ai, Bi, Ci, and one
temporary qubit used as part of the carry propagation). In
the next section, we see that the transceiver qubits are the
bottleneck; we cannot actually achieve this 4k + 3 latency.

5 Performance

The modular exponentiation to run Shor’s factoring al-
gorithm on a 1,024-bit number requires approximately 2.8
million calls to the integer adder [54]. With a 100 μsec
adder, that will require about five minutes; with a 1 msec
adder, it will take under an hour. Even a system two to three
orders of magnitude slower than this will have attractive
performance, provided that error correction can sustain the
system state for that long, and that the system can be built
and operated economically. This section presents numerical
estimates of performance which show that this criterion is
easily met by a quantum multicomputer under a variety of
assumptions about logical operation times, providing plenty
of headroom for quantum error correction.

5.1 Initial Estimate

Our initial results are shown in table 1. Units are in
number of complete teleportations, treating teleportation
and EPR pair generation as a single block, and assum-
ing zero cost for local gates. In the following subsections

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

algo. size Baseline Telegate Teledata
bus line fully bus 2bus line fully 2F bus 2bus line fully 2F

VBE 16 360 305 182 105 105 105 105 105 30 30 30 30 30
128 3048 2545 1526 889 889 889 889 889 254 254 254 254 254

1024 24552 20465 12278 7161 7161 7161 7161 7161 2046 2046 2046 2046 2046
CDKM 16 232 160 160 138 96 96 97 96 90 60 34 90 34

128 1912 1280 1280 1146 768 768 768 768 762 508 258 762 258
1024 15352 10240 10240 9210 6144 6144 6145 6144 6138 4092 2050 6138 2050

Carry- 16 644 N/A 99 444 222 N/A 136 135 260 178 N/A 96 56
look- 128 6557 N/A 159 4901 2451 N/A 256 255 3176 2028 N/A 192 104
ahead 1024 54806 N/A 219 41502 20751 N/A 376 375 27260 17206 N/A 288 152

Table 1. Estimate of latency necessary to execute various adder circuits on different topologies of
quantum multicomputer, assuming monolithic teleportation blocks (Sec. 5.1). Units are in number
of teleportation blocks, including EPR pair creation (bus transaction), local gates and classical com-
munication. Size, length of the numbers to be added, in bits. Lower numbers are faster (better).

these assumptions are revisited. We show three approaches
(baseline, telegate, and teledata) and three adder algorithms
(VBE, CDKM, and carry-lookahead) for five networks (bus,
2bus, line, fully, 2fully) and three problem sizes (16, 128,
and 1024 bits). In the baseline case, each node contains
only a single logical qubit; gates are therefore executed us-
ing the telegate approach. For each algorithm we need one
node per qubit. VBE requires 3n nodes and CDKM 2n + 2
nodes. Carry-lookahead requires 59, 504, and 4,085 nodes,
respectively, for 16, 128, and 1,024-bit adders. For the tele-
gate and teledata columns, we chose node sizes and number
of nodes to suit the algorithms. For telegate, VBE uses n
three-qubit nodes; CDKM uses n + 1 two-qubit nodes; and
carry-lookahead uses n four-qubit nodes. For teledata, the
same number of nodes is required, but each node must hold
one more logical qubit.

The VBE adder, although larger and slower than CDKM
on a monolithic computer, is faster in a distributed envi-
ronment. The VBE adder exhibits a large (3.5x) perfor-
mance gain by using the teledata method instead of telegate.
For teledata, the performance is independent of the network
topology, because only a single operation is required at a
time, moving a qubit to a neighboring node. The CDKM
adder also communicates only with nearest neighbors, but
performs more transfers. The single bus configuration is al-
most 3x slower than the line topology. On a line, in most
time slots, three concurrent transfers are conducted (e.g.,
between nodes 1 → 2, 3 → 2, and 3 → 4).

An unanticipated but intuitive result is that the perfor-
mance of the carry-lookahead adder is better in the base-
line case than the telegate case, for the fully-connected
network. This is due to the limitation of having a single
transceiver qubit per node. Putting more qubits in a node
increases contention for the transceiver qubit, and reduces

performance even though the absolute number of gates that
must be executed via teleportation has been reduced. The
carry-lookahead adder is easily seen to be inappropriate for
the line architecture, since the carry-lookahead requires the
use of long-distance gates in order to propagate carry in-
formation quickly. Our numbers also show that the carry-
lookahead adder is not a good match for a bus architecture,
despite the favorable long-distance transport, again because
of excessive contention for the bus.

For the telegate carry-lookahead, performing some ad-
justments to eliminate intra-node gates, we find 8n−9k−8
total Toffoli gates that need arguments that are originally
stored on three separate nodes, plus n−2 two-node CNOTs.
For the bus case, which allows no concurrency, this is our
final cost. For the fully-connected network, we find a depth
of 8k − 10 three-node CCNOTs, 8 two-node CCNOTs, and
1 CNOT. These must be multiplied by the appropriate CC-
NOT breakdown. The fully and 2fully perform similarly,
with the algorithm unable to take advantage of the availabil-
ity of extra interconnect bandwidth when using the telegate
method.

For the teledata, carry-lookahead, fully-connected case,
each three-node Toffoli gate requires four teleportations (in
and out for each of two variables). For the 2fully network,
the latency of the three-node Toffolis is halved, but the two-
node Toffolis do not benefit, giving us a final cost of slightly
over half the fully network cost.

5.2 Improved Performance

The analysis in section 5.1 assumed that a teleportation
operation is a monolithic unit. However, figure 4 makes it
clear that a teleportation actually consists of several phases.
The first portion is the creation of the entangled EPR pair.
The second portion is local computation and measurement

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

algo. size Baseline Telegate Teledata
bus line fully bus 2bus line fully 2F bus 2bus line fully 2F

VBE 16 360 16 16 105 53 7 14 7 30 15 2 4 2
128 3048 16 16 889 445 7 14 7 254 127 2 4 2

1024 24552 16 16 7161 3581 7 14 7 2046 1023 2 4 2
CDKM 16 232 21 19 135 68 11 18 9 90 60 6 12 6

128 1912 21 19 1146 573 11 18 9 762 508 6 12 6
1024 15352 21 19 9210 4605 11 18 9 6138 4092 6 12 6

Carry- 16 644 N/A 99 444 222 N/A 89 45 260 178 N/A 96 56
look- 128 6557 N/A 159 4901 2451 N/A 149 75 3176 2028 N/A 192 104
ahead 1024 54806 N/A 219 41502 20751 N/A 209 105 27260 17206 N/A 288 152

Table 2. Estimated latency to execute various adders on different topologies, for decomposed tele-
portation blocks (sec. 5.2), assuming classical communication and local gates have zero cost. Units
are in EPR pair creation times. 2F, 2fully.

at the sending node, followed by classical communication
between nodes, then local operations at the receiving node.
The EPR pair creation is not data-dependent; it can be done
in advance, as resources (bus time slots, qubits) become
available, for both telegate and teledata.

Our initial execution time model treats local gates and
classical communication as free, assuming that EPR pair
creation is the most expensive portion of the computation.
For example, for the teledata VBE adder on a linear topol-
ogy, all of the EPR pairs needed can be created in two time
steps at the beginning of the computation. The execution
time would therefore be 2, constant for all n. Table 2 shows
the performance under this assumption. The performance
of the carry-lookahead adder does not change, as the bottle-
neck link is busy full-time creating EPR pairs.

This model gives a misleading picture of performance
once EPR pair creation is decoupled from the teleportation
sequence. When the cost of the teleportation itself or of
local gates exceeds ∼ 1/n of the cost of the EPR pair gen-
eration, the simplistic model breaks down; in the next sub-
section, we examine the performance with a more realistic
model.

5.3 Detailed Estimate

To create figures 7-9, we make assumptions about the
execution time of various operations. Classical communi-
cation between nodes is 10nsec. A CCNOT (Toffoli) gate
on encoded qubits takes 50nsec, CNOT 10nsec, and NOT
1nsec. These numbers can be considered realistic but opti-
mistic for a technology with physical gate times in the low
nanoseconds; for quantum error correction-encoded solid-
state systems, the bottleneck is likely to be the time for qubit
initialization or reliable single-shot measurement, which is
still being designed (see the references in [55]).

Figures 7 and 8 show, top to bottom, the 2fully and line
networks for the telegate and teledata methods. We plot
adder time against EPR pair creation time and the length
of the numbers to be added. The left hand plot shows the
shape of the surfaces, with the z axis being latency to com-
plete the addition. The right hand plot, with the same x and
y axes, shows the regions in which each type of adder is the
fastest. The hatched red area indicates areas where carry-
lookahead is the fastest, the diagonally lined green area in-
dicates CDKM carry-ripple, and solid blue indicates VBE
carry-ripple.

We vary the EPR pair creation time from 10nsec to
1280nsec. This creation process is influenced by the choice
of parallel or serial bus and the cycle time of an optical ho-
modyne detector, repeated as necessary for entanglement
purification [12, 7]. Photodetectors may be inherently fast,
but their performance is limited by surrounding electron-
ics [2, 51]. Final performance may be faster or slower than
our model, but the range of values we have analyzed is
broad enough to demonstrate clearly the important trends.

These figures show that the teledata method is faster than
telegate. They also show that the carry-lookahead adder is
very dependent on EPR pair creation time, while neither
carry-ripple adder is. If EPR pair creation time is low, the
carry-lookahead adder is very fast; if creation time is high,
the adder is slow. The execution time grows only logarith-
mically in the length of the numbers to be added, but that
time is dominated by the actual EPR pair creation time,
whereas carry-ripple adders require only a small, constant
number of EPR pairs to be created per node. We also find
that, because the carry-ripple adder times are now domi-
nated by the classical communication and local gates, carry-
ripple adder time is not strongly influenced by topology.
In figure 9 we show this in more detail. For fast (10nsec)
EPR pair creation, the carry-lookahead adder is faster for

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

all problem sizes. For slow (1280nsec) EPR pair creation
time, carry-lookahead is not faster until we reach 512 bits.
The times for the fully and 2fully networks are both almost
identical to the times for the linear network.

Although we do not include graphs, we have also varied
the time for classical communication and the other types of
gates. The performance of an adder is fairly insensitive to
these changes; it is dominated by the relationship between
CCNOT and EPR pair creation times.

6 Conclusion

We have evaluated the performance of arithmetic circuits
on a quantum multicomputer, a system composed of multi-
ple nodes, for different problem sizes, interconnect topolo-
gies, and gate timings. Although we have assumed that
the interconnect is based on the qubus entanglement pro-
tocol creation of EPR pairs, our analysis, especially table 1,
applies equally well to any two-level structure with low-
latency local operations and high-latency long-distance op-
erations. The details of the cost depend on the intercon-
nect topology, number of transceiver qubits, and the chosen
breakdown for CCNOT. More important than actual gate
times for this analysis is gate time ratios. The time val-
ues presented here are reasonable for solid-state qubits un-
der optimistic assumptions about advances in the underly-
ing technology. Applying our results to slower technologies
(or the same technology using more layers of quantum error
correction) is a simple matter of scaling by the appropriate
clock speed and storage requirements.

We find that the teledata method is faster than the tele-
gate method, and that separating the actual data teleporta-
tion from the necessary EPR pair creation allows a carry-
ripple adder to be efficient for large problems. Each of
the adder algorithms has natural groupings of small num-
bers (2-5) of qubits; when groupings are mapped to nodes,
a linear network topology is adequate for up to a hundred
nodes or more, depending on the cost ratio of EPR pair
creation to local gates. For very large systems, switching
interconnects, which are well understood in the optical do-
main [30, 35, 52], may become necessary, though we rec-
ommend deferring the addition of switching due to the com-
plexity and the inherent signal loss; switching time in such
systems also must be considered.

Our results show that node size, interconnect topology,
distributed gate approach (teledata v. telegate), and choice
of adder affect overall performance in sometimes unex-
pected ways. Increasing the number of logical qubits per
node, for example, reduces the total number of intercon-
nect transfers but concentrates them in fewer places, caus-
ing contention for access. Therefore, increasing node size is
not favorable unless node I/O bandwidth increases propor-
tionally; we recommend keeping the node size small and

fixed for the foreseeable future.
This research is part of an overall effort to design a scal-

able quantum multicomputer. We are currently investigat-
ing distributed quantum error correction, which will deter-
mine whether each link in the interconnect, as presented
here, must be parallel or may be serial [60]. Many map-
pings of qubits to nodes (and gates to bus timeslots) are
possible; we do not claim the arrangements presented here
are optimal. We are investigating further layouts using evo-
lutionary algorithms, and expect to report those results at a
future date.

Our data presents a clear path forward. We recommend
pursuing a node architecture consisting of only a few logical
qubits and initially two transceiver (quantum I/O) qubits.
This will allow construction of a linear network, which will
perform adequately with a carry-ripple adder up to moder-
ately large systems. Engineering emphasis should be placed
on supporting more transceiver qubits in each node, which
can be used to parallelize transfers, decrease the network
diameter, and provide fault tolerance. Significant effort is
warranted on minimizing the key parameter of EPR pair
creation time. Only once these avenues have been ex-
hausted should the node size be increased and a switched
optical network introduced. This approach should lead to
the design of a viable quantum multicomputer.

Acknowledgments

The authors thanks Eisuke Abe for useful discussions,
and Thaddeus Ladd for both discussions and writing advice.
We thank the anonymous referees for their valuable input.
We thank Darshan Thaker for helping to ensure consistency
of presentation in the 2006 ISCA quantum computing pa-
pers.

References

[1] ARDA. A quantum information science and technology
roadmap, v2.0 edition, Apr. 2004.

[2] M. A. Armen, J. K. Au, J. K. Stockton, A. C. Doherty, and
H. Mabuchi. Adaptive homodyne measurement of optical
phase. Physical Review Letters, 89:133602, 2002.

[3] W. C. Athas and C. L. Seitz. Multicomputers: message-
passing concurrent computers. IEEE Computer, 21:9–24,
Aug. 1988.

[4] S. Balensiefer, L. Kregor-Stickles, and M. Oskin. An evalu-
ation framework and instruction set architecture for ion-trap
based quantum micro-architectures. In Proc. 32nd Annual
International Symposium on Computer Architecture, June
2005.

[5] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo,
N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Wein-
furter. Elementary gates for quantum computation. Phys.
Rev. A, 52:3457, 1995.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

 1024 512 256 128 64 32 16 10
 100

 1000

 300000

 200000

 100000

 0

adder latency (ns)
2Fully Connected Network

 lookahead
 CDKM

 VBE

Length of numbers to be added (bits)
EPR pair creation

time (ns)

adder latency (ns)

 10

 100

 1000

1024512256128643216

E
P

R
 p

ai
r

cr
ea

tio
n

tim
e

(n
s)

Length of numbers to be added (bits)

2Fully Connected Network

 1024 512 256 128 64 32 16 10
 100

 1000

 300000

 200000

 100000

 0

adder latency (ns)
Line Network

 CDKM
 VBE

Length of numbers to be added (bits)
EPR pair creation

time (ns)

adder latency (ns)

 10

 100

 1000

1024512256128643216

E
P

R
 p

ai
r

cr
ea

tio
n

tim
e

(n
s)

Length of numbers to be added (bits)

Line Network

Figure 7. (Telegate) Performance of different adders on two different networks, one with two links
per node (2fully) and one line configuration. See section 5.3.

 1024 512 256 128 64 32 16 10
 100

 1000

 300000

 200000

 100000

 0

adder latency (ns)
2Fully Connected Network

 lookahead
 CDKM

 VBE

Length of numbers to be added (bits)
EPR pair creation

time (ns)

adder latency (ns)

 10

 100

 1000

1024512256128643216

E
P

R
 p

ai
r

cr
ea

tio
n

tim
e

(n
s)

Length of numbers to be added (bits)

2Fully Connected Network

 1024 512 256 128 64 32 16 10
 100

 1000

 300000

 200000

 100000

 0

adder latency (ns)
Line Network

 CDKM
 VBE

Length of numbers to be added (bits)
EPR pair creation

time (ns)

adder latency (ns)

 10

 100

 1000

1024512256128643216

E
P

R
 p

ai
r

cr
ea

tio
n

tim
e

(n
s)

Length of numbers to be added (bits)

Line Network

Figure 8. (Teledata) The setup is the same as the previous graph.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1024 512 256 128 64 32 16

ad
de

r
la

te
nc

y
(n

s)

Length of numbers to be added (bits)

EPR Pair Creation Time = 10 nsec

2Fully look
Line CDKM

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1024 512 256 128 64 32 16

ad
de

r
la

te
nc

y
(n

s)

Length of numbers to be added (bits)

EPR Pair Creation Time = 1280 nsec

2Fully look
Line CDKM

Figure 9. (Teledata) Comparison of CDKM on a line network with carry-lookahead on a 2fully network.
These are the “front” and “back” cross-sections of figure 8.

[6] D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill.
Efficient networks for quantum factoring. Phys. Rev. A,
54:1034–1063, 1996. http://arXiv.org/quant-ph/9602016.

[7] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schu-
macher. Concentrating partial entanglement by local opera-
tions. Physical Review A, 53:2046, 1996.

[8] C. H. Bennett, G. Brassard, C. Crépeau, R. Josza, A. Peres,
and W. Wootters. Teleporting an unknown quantum state via
dual classical and EPR channels. Physical Review Letters,
70:1895–1899, 1993.

[9] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Wein-
furter, and A. Zeilinger. Experimental quantum teleporta-
tion. Nature, 390:575–579, Dec. 1997.

[10] A. R. Calderbank and P. W. Shor. Good quantum error-
correcting codes exist. Physical Review A, 54:1098–1105,
1996.

[11] L. Childress, J. M. Taylor, A. S. Sørensen, and M. Lukin.
Fault-tolerant quantum repeaters with minimal physical re-
sources, and implementations based on single-photon emit-
ters. http://arXiv.org/quant-ph/0502112, Feb. 2005.

[12] J. Cirac, A. Ekert, S. Huelga, and C. Macchiavello. Dis-
tributed quantum computation over noisy channels. Physical
Review A, 59:4249, 1999.

[13] J. I. Cirac and P. Zoller. Quantum computations with cold
trapped ions. Phys. Rev. Lett., 74:4091–4094, 1995.

[14] D. Copsey, M. Oskin, T. Metodiev, F. T. Chong, I. Chuang,
and J. Kubiatowicz. The effect of communication costs in
solid-state quantum computing architectures. In Proceed-
ings of the fifteenth annual ACM Symposium on Parallel Al-
gorithms and Architectures, pages 65–74, 2003.

[15] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P.
Moulton. A new quantum ripple-carry addition circuit.
http://arXiv.org/quant-ph/0410184, Oct. 2004.

[16] D. Deutsch and R. Jozsa. Rapid solution of problems
by quantum computation. Proc. R. Soc. London, Ser. A,
439:553, 1992.

[17] D. P. DiVincenzo. Quantum gates and circuits. Proc. Royal
Soc. London A, 1998.

[18] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M.
Svore. A logarithmic-depth quantum carry-lookahead adder.
http://arXiv.org/quant-ph/0406142, June 2004.

[19] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan
Kaufmann, San Francisco, CA, 2004.

[20] T. Fujisawa, T. H. Oosterkamp, W. G. van der Wiel, B. W.
Broer, R. Aguado, S. Tarucha, and L. P. Kouwenhoven.
Spontaneous emission spectrum in double quantum dot de-
vices. Science, 282:932–935, 1998.

[21] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs,
H. J. Kimble, and E. S. Polzik. Unconditional Quantum
Teleportation. Science, 282(5389):706–709, 1998.

[22] D. Gottesman and I. L. Chuang. Demonstrating the viability
of universal quantum computation using teleportation and
single-qubit operations. Nature, 402:390–393, 1999.

[23] L. Grover. A fast quantum-mechanical algorithm for
database search. In Proc. 28th Annual ACM Sympo-
sium on the Theory of Computation, pages 212–219, 1996.
http://arXiv.org/quant-ph/9605043.

[24] L. K. Grover. Quantum telecomputation.
http://arXiv.org/quant-ph/9704012, Apr. 1997.

[25] S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner,
H. Haffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt.
Implementation of the Deutsch-Jozsa algorithm on an ion-
trap quantum computer. Nature, 421:48–50, 2003.

[26] F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and
J. Wratchtrup. Observation of coherence oscillation of a sin-
gle nuclear spin and realization of a two-qubit conditional
quantum gate. Physical Review Letters, 93:130501, Sept.
2004.

[27] J. Johansson et al. Vacuum Rabi oscillations in a
macroscopic superconducting qubit LC oscillator system.
http://arXiv.org/cond-mat/0510457, 2005.

[28] R. Jozsa and N. Linden. On the role of entanglement
in quantum computational speedup. Proc. Royal Soc.
London A, 459:2011–2032, 2003. http://arXiv.org/quant-
ph/0201143.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

[29] D. Kielpinski, C. Monroe, and D. J. Wineland. Architec-
ture for a large-scale ion-trap quantum computer. Nature,
417:709–711, 2002.

[30] J. Kim et al. 1100x1100 port MEMS-based optical crosscon-
nect with 4-dB maximum loss. IEEE Photonics Technology
Letters, 15(11):1537–1539, 2003.

[31] J. Kim et al. System design for large-scale ion trap quantum
information processor. Quantum Information and Computa-
tion, 5(7):515–537, 2005.

[32] D. E. Knuth. The Art of Computer Programming, volume 2 /
Seminumerical Algorithms. Addison-Wesley, Reading, MA,
3rd edition, 1998.

[33] Y. L. Lim, S. D. Barrett, A. Beige, P. Kok, and L. C. Kwek.
Repeat-Until-Success quantum computing using stationary
and flying qubits. http://arXiv.org/quant-ph/0508218, Aug.
2005.

[34] P. J. Love and B. M. Boghosian. Type-II quantum algo-
rithms. Physica A, 2005, to appear.

[35] P. J. Marchand, A. V. Krishnamoorthy, G. I. Yayla, S. C. Es-
ener, and U. Efron. Optically augmented 3-d computer: Sys-
tem technology and architecture. J. Parallel and Distributed
Computing, 41(1):20–35, Feb. 1997.

[36] D. N. Matsukevich and A. Kuzmich. Quantum State Trans-
fer Between Matter and Light. Science, 306(5696):663–666,
2004.

[37] M. Mehring, J. Mende, and W. Scherer. Entanglement be-
tween and electron and a nuclear spin 1/2. Physical Review
Letters, 90:153001, Apr. 2003.

[38] W. Munro, K. Nemoto, and T. Spiller. Weak nonlinearities:
a new route to optical quantum computation. New Journal
of Physics, 7:137, May 2005.

[39] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai. Coherent control
of macroscopic quantum states in a single-cooper-pair box.
Nature, 398:786–788, Apr. 1999.

[40] K. Nemoto and W. J. Munro. Nearly deterministic lin-
ear optical controlled-NOT gate. Physical Review Letters,
93:250502, 2004.

[41] M. A. Nielsen. Simple rules for a complex quantum world.
In The Edge of Physics. Scientific American, 2003.

[42] M. A. Nielsen and I. L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

[43] M. Oskin, F. T. Chong, I. L. Chuang, and J. Kubiatowicz.
Building quantum wires: The long and short of it. In Com-
puter Architecture News, Proc. 30th Annual International
Symposium on Computer Architecture. ACM, June 2003.

[44] P. W. Shor. Algorithms for quantum computation: Discrete
logarithms and factoring. In Proc. 35th Symposium on Foun-
dations of Computer Science, pages 124–134, Los Alamitos,
CA, 1994. IEEE Computer Society Press.

[45] P. W. Shor. Fault-tolerant quantum computation. In
Proc. 37th Symposium on Foundations of Computer Science,
pages 56–65, Los Alamitos, CA, 1996. IEEE Computer So-
ciety Press.

[46] T. P. Spiller, W. J. Munro, S. D. Barrett, and P. Kok. An
introduction to quantum information processing: applica-
tions and realisations. Technical Report HPL-2005-192,
Oct. 2005.

[47] T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro,
P. van Loock, and G. J. Milburn. Quantum computation
by communication. http://arxiv.org/abs/quant-ph/0509202,
Sept. 2005.

[48] A. M. Steane. Overhead and noise threshold of fault-tolerant
quantum error correction. Physical Review A, 68:042322,
2003.

[49] A. M. Steane. How to build a 300 bit, 1 Gop quantum com-
puter. http://arxiv.org/abs/quant-ph/0412165, Dec. 2004.

[50] A. M. Steane and D. M. Lucas. Quantum computing with
trapped ions, atoms, and light. Fortschritte der Physik, Apr.
2000. http://arXiv.org/quant-ph/0004053.

[51] J. Stockton, M. Armen, and H. Mabuchi. Programmable
logic devices in experimental quantum optics. J. Opt. Soc.
Am. B, 19:3019, 2002.

[52] T. Szymanski and H. Hinton. Design of a terabit free-space
photonic backplane for parallel computing. In Proc. Second
Workshop on Massively Parallel Processing Using Optical
Interconnections. IEEE, 1995.

[53] D. D. Thaker, T. Metodi, A. Cross, I. Chuang, and F. T.
Chong. CQLA: Matching density to exploitable parallelism
in quantum computing. In Computer Architecture News,
Proc. 33rd Annual International Symposium on Computer
Architecture. ACM, June 2006.

[54] R. Van Meter and K. M. Itoh. Fast quantum modular expo-
nentiation. Physical Review A, 71(5):052320, May 2005.

[55] R. Van Meter and M. Oskin. Architectural implications
of quantum computing technologies. J. Emerging Tech. in
Comp. Sys., 2(1), Jan. 2006. to appear.

[56] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni,
M. H. Sherwood, and I. L. Chuang. Experimental realization
of Shor’s quantum factoring algorithm using nuclear mag-
netic resonance. Nature, 414:883–887, Dec. 2001.

[57] V. Vedral, A. Barenco, and A. Ekert. Quantum networks for
elementary arithmetic operations. Phys. Rev. A, 54:147–153,
1996. http://arXiv.org/quant-ph/9511018.

[58] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-
S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J.
Schoelkopf. Strong coupling of a single photon to a su-
perconducting qubit using circuit quantum electrodynamics.
Nature, 431:162–167, Sept. 2004.

[59] C. P. Williams and S. H. Clearwater. Ultimate Zero and One:
Computing at the Quantum Frontier. Copernicus Books,
1999.

[60] F. Yamaguchi, K. Nemoto, and W. J. Munro.
Quantum error correction via robust probe modes.
http://arxiv.org/abs/quant-ph/0511098, Nov. 2005.

[61] J. Yepez. Type-II quantum computers. International Journal
of Modern Physics C, 12(9):1273–1284, 2001.

[62] A. Yimsiriwattana and S. J. Lomonaco Jr. Dis-
tributed quantum computing: A distributed Shor algorithm.
http://arxiv.org/quant-ph/0403146, Mar. 2004.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

