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Abstract

Computational cell biology is a relatively new branch of computational sciences which

sets computer simulation, as well as molecular biology, biochemistry and biophysics, at

the center of its disciplines.

This thesis first inspects this new field of science, putting emphases on its computational

aspects, and identifies some distinct demands in design of simulation algorithms and

software platforms. One important characteristic, amongst others, of computational

cell biology is that it is highly heterogeneous in terms of modeling formalisms and

computational methods. Different simulation techniques are used for different types

of sub-systems in the cell, and these sub-systems are often represented by different

timescales. We found that the scientific necessity to integrate these computational sub-

components to form higher order, multi-formalism, and composite models is becoming

increasingly important.

Secondly, this thesis proposes a novel computational framework based on a discrete-

event scheduler, Hermite polynomial interpolation, and object-orientation that realizes

efficient multi-algorithm and multi-timescale simulations without sacrifice of modular-

ities of sub-models running on different simulation techniques. It is demonstrated that

this framework can give a significant speed-up to a real biological simulation model

of E. coli heat shock response by coupling Gillespie’s stochastic simulation algorithm

and ODE solvers. It is also shown that this framework can boost a multi-timescale

simulation of coupled harmonic oscillators.

Lastly, this thesis describes design and implementation issues of E-Cell System Version

3, a newly developed software environment for modeling, simulation and analysis in

computational cell biology, in which the new computational framework is implemented.



論文題目

「多解法、多重時間尺度細胞生物学シミュレーション

— 要求分析、解法設計、およびソフトウエア実装」

論文要旨

計算細胞生物学は、分子生物学、生化学、生物物理学などに加え計算機シミュレーショ

ンを核とした計算科学の比較的新しい一分野である。

この論文では、まずこの新しい分野についてその計算科学的な面に重点を置いて詳しく

議論し、シミュレーション法とソフトウエア基盤の設計における要求を見極める。この

分野の重要な特徴の一つは、モデリング様式および計算手法の面において非常に多様な

ことである。細胞内の部分系にはそれぞれ異なるシミュレーション法が用いられること

があり、またそれぞれ異なる時間尺度が伴うことも多い。これらの部分系をより高次の

多様式、混成的モデルに組みたてることには科学的な必要性があることを議論する。

次に、この論文では離散イベントスケジューラー、エルミート多項式、およびオブジェ

クト指向に基いた新しいシミュレーションの枠組みを提案する。この枠組みは、複数の

異なる解法に基き、多重の時間尺度で動作する部分系から成る混成モデルを、部分モデ

ル間のモジュール性を損なうことなく効率よく駆動できる。大腸菌の熱ショック反応を例

にとり、この枠組みが実際の生物学的な問題を従来に比べ著しく高速に解けることを示

す。また、この枠組みが多重時間尺度の結合調和振動子系モデルのシミュレーションも

高速化できることも示す。

最後に、この新しい枠組みを実装した計算細胞生物学におけるモデリング、シミュレー

ションおよび解析のためのソフトウエア環境である、E-Cell System Version 3の設計と

実装について説明する。
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Chapter 1

Introduction

1.1 Introduction

The advent of molecular biology in the twentieth century has led to exponential growth

in our knowledge about the inner workings of life. Dozens of completed genomes are

now at hand, and equipped with an array of high throughput methods to characterize

the way in which encoded genes and their products operate, we find ourselves asking

exactly how to assemble the various pieces. The question is whether we can predict the

behavior of a living cell given sufficient information about its molecular components.

As with any network of interacting elements, the overall behavior becomes nonintuitive

as soon as their number exceeds three. Computers have proven to be an invaluable tool

in the analysis of these systems, and many biologists are turning to the keyboard. It is

worth noting that the motivation of the biologist here is somewhat different from that

of the biologist who turns to computing for bioinformatics (such as sequence analysis).

Bioinformatics delivers additional information about the biopolymers being studied,

and may provide clues as to their function. What is sought in the analysis of cellular
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1.2. CONTRIBUTIONS

systems is a reconstruction of experimental phenomena from the known properties of

the individual molecules, and more importantly, the interactions between them. Such a

model, if sufficiently detailed and accurate, serves as a reference, a guide for interpreting

experimental results, and a powerful means of suggesting new hypotheses.

Modeling, simulation, and analysis is therefore perfectly positioned for integration into

the experimental cycle of cell biology. In addition to demystifying nonintuitive phe-

nomena, simulation allows experimentally unfeasible scenarios to be tested, and has

the potential to seriously reduce experimental costs. Although “real” experiments will

always be necessary to advance our understanding of biological processes, conducting

“in silico” experiments using computer models can help to guide the wet lab process,

effectively narrowing the experimental search space.

The process of building in silico models of cells contrasts with the traditional hypothesis-

driven research process in biology. Modeling can be described as a holistic approach

that opposes the reductionism so widespread in biology. Molecular and cellular biolo-

gists have been overwhelmingly successful in identifying, purifying, and characterizing

molecules crucial to specific cellular functions. However, results from genome projects

reveal that most organisms contain a surprisingly small number of genes, at least rel-

ative to the complexity of the phenotype. This provides a striking demonstration of

the nontrivial nature of molecular interactions in the cell — the whole, quite simply, is

much more than the mere sum of its parts.

1.2 Contributions

The main contribution of this thesis is the development of a new, multi-algorithm

and multi-timescale computational framework called the ’meta-algorithm’. On this

framework, virtually any, discrete/continuous, stochastic/deterministic, simulation al-

14



1.3. ORGANIZATION

gorithms can be implemented and used in any combination in simulations.

Secondly, E-Cell Simulation Environment, a simulation software for computational cell

biology, is developed in a fully object-oriented fashion based on the meta-algorithm

framework.

As the rationale of development of these new computational framework and software,

this thesis also argues that computational cell biology has some major features those dis-

tinguish itself from conventional computational sciences such as computational physics

and biochemical simulations.

1.3 Organization

Chapter 2 discusses a domain analysis of computational cell biology from the viewpoint

of simulation algorithm design and software engineering, and we identify seven ’desir-

able features’ of cellular simulation software. Chapter 3 defines a new computational

framework (the meta-algorithm). We use two demonstration models, a Gillespie/ODE

composite E. coli heat-shock model and a multi-timescale coupled harmonic oscillator

model, and find that the meta-algorithm can successfully combine different simulation

algorithms and timescales yielding considerable performance improvements. This chap-

ter also has some discussions on possible design options for multi-algorithm simulators.

The implementation of the meta-algorithm on E-Cell Simulation Environment Version

3 is discussed in Chapter 4. E-Cell Simulation Environment is part of E-Cell System,

a generic software suite for modeling, simulation and analysis of cellular systems.

15



Chapter 2

Requirements Analysis

This chapter investigates the cell as a target of simulation, and discusses computational

challenges that it poses. We identify required features of cell biology simulators that

can be used to reconstruct various levels of physical phenomena in the cell.

2.1 Simulation of cellular processes

The cell is a big system in terms of the number and the diversity of physical phenomena

that constitutes its internal dynamics. The small number of genes in most organisms

implies that molecular phenomena in the cell are, to say the least, nontrivial. Collective

knowledge of parts of the system itself does not directly lead to understanding of the

cell as a whole. Necessity and importance of cell simulation as a research method arises

here; putting the data into databases is not enough, only a more constructive approach

with computer modeling and simulation can provide a way to understand the cell as a

system.

In this section, we review such chemical and physical phenomena and discuss some

16



2.1. SIMULATION OF CELLULAR PROCESSES

possible computational approaches to simulate these systems.

2.1.1 Metabolism

Energy metabolism is the best characterized part of all cellular behavior, and is partic-

ularly well understood in human red blood cells. Given that an erythrocyte is devoid

of nuclei and other related features, it serves as an ideal model system for studying

metabolism in isolation — this cell is, essentially, “a bag of metabolism”. Biochemists

have succeeded in collecting enough quantitative data to allow kinetic models of the

entire cell to be constructed, and there is a long history of computer simulations dating

back to the 1960s (Zajicek, 1968). These metabolic models, and many others, typi-

cally comprise a set of ordinary differential equations (ODE) that describe the rates of

enzymatic reactions. These can be solved by numerical integration, for which several

well-established algorithms exist.

Modern metabolic pathway models typically consist of primary state variables for

molecular species concentrations, one ODE for each enzyme reaction, and a stoichio-

metric matrix. The rate equations of most modern enzyme kinetics models are de-

rived using the King-Altman method (King and Altman, 1956) , which is a generalized

version of the classical formulation of Michaelis and Menten, the Michaelis-Menten

equations (Michaelis and Menten, 1913). Additional algebraic equations are commonly

employed as constraints on the system. Thus, most metabolism models are described

as differential-algebraic equations (DAE). The origin of numerical methods for solving

ODEs can be traced back to Euler’s work in the eighteenth century. Variations of

the Runge-Kutta method are generally used for simulations. Implicit variations of the

methods, are often used for ’stiff’ systems which involve a wide range of time constants.

See the following section for discussions about stiffness of ODEs. Although there have

been certain major advances in the last few decades, the essence of the numerical al-

17



2.1. SIMULATION OF CELLULAR PROCESSES

gorithms for solving initial value problems of ODE systems was described by Gear in

1971 (Gear, 1971). Press et al. also give an introduction to the topic in Numerical

Recipes in C (Press, 1988). The theoretical and practical bases of simulating metabolic

pathways are therefore quite well grounded. However, the design and implementation

of simulation software and model construction methods, which this thesis attempts to

highlight, are still under active discussion.

Metabolism, of course, is not the only function of the cell, and we must not forget that

cells have other important roles such as gene expression, signal transduction, motility,

vesicular transport, cell division and differentiation. Although quantitative data on

these processes are still relatively sparse compared to erythrocyte energy metabolism,

certain systems have been modeled with considerable success. Examples include the

simulation of gene expression in phage-λ (McAdams and Shapiro, 1995) and the signal

transduction pathway controlling bacterial chemotaxis (Bray et al.,, 1993).

2.1.2 Signal transduction

Signal transduction pathways constitute an example of systems with characteristics

that prevent the simple application of ODE-based modeling. These pathways are ordi-

narily composed of much fewer numbers of reactant molecules than metabolic systems,

and the underlying stochastic behavior of the molecular interactions becomes evident.

Accordingly, there have been attempts to model signal transduction pathways with

stochastic computation (Morton-Firth and Bray, 1998; Morton-Firth et al.,, 1999) in-

stead of deterministic methods (e.g. use of ODEs).

Recently, it has been revealed that two-dimensional stochastic coupled lattice model of

receptor localization of E. coli chemotaxis signaling better explains the system’s hyper

sensitivity to stimuli that could not be reproduced by conventional compartmental

18



2.1. SIMULATION OF CELLULAR PROCESSES

simulations (Shimizu et al.,, 2003).

2.1.3 Gene expression

Gene expression systems, like signaling pathways, tend to be composed of a small num-

ber of molecular entities, which include transcription factors, polymerases, and genes.

These low copy number molecules orchestrate gene expression in a highly stochastic

fashion. For example, the initial phase of gene expression is remarkable because its

stochastic behavior has binary consequences: binding of a rare transcription factor and

a single gene in a cell can determine whether the gene is turned on or off. It seems that

in many cases, gene expression systems might best be modeled with stochastic equa-

tions, although there are many other ways to model this phenomena, depending on the

modeler’s interests. Examples include ODE models (e.g. linear models and mass ac-

tion models), S-System models (Savageau, 1976), and binary and multi-reaction models

(Hasty et al.,, 2001).

Another characteristic of gene expression systems is the richness of interaction with

other cellular processes. These systems can control metabolic flux by changing the

concentrations of enzymes, and at the same time being regulated by signaling proteins.

Chromosomal structure is dynamically regulated by DNA binding factors, which are

in turn derived from other genes. When a whole cell is modeled, elements in the

gene expression system sometimes need information about elements in other systems,

in order to allow cross-system interactions. Integration of gene expression and other

systems at the whole cell level might best be accommodated by object-oriented data

structures, as previously described in Hashimoto et al., (1999).

19



2.2. COMPUTATIONAL CELL BIOLOGY

2.1.4 Biophysical phenomena

All of the above simulation examples treat the properties of protein binding and enzyme

kinetics reactions. However, certain cellular processes such as cytoskeletal movement

and cytoplasmic streaming, need to be modeled at the biophysical level. Cytoplasmic

streaming involves diffusion of relatively heavy proteins, whereas the movement of the

cytoskeleton causes structural changes, including cell division and cell differentiation.

Simulations of these phenomena have been carried out since the 1970s (Novitski and

Bajer, 1978). Studies have become more precise with time, concomitant with the

increase in our depth of understanding at the molecular level (Gibbons et al.,, 2001).

2.1.5 Summary

A few types of cellular processes and typical computational approaches are shown in

Table 2.1. The interested reader is referred to two recent reviews which address some

of the issues raised thus far: Tyson et al. provide an excellent review of computational

cell biology with an emphasis on cell-cycle control (Tyson et al.,, 2001), while Phair

and Misteli review the application of kinetic modeling methods to biophysical problems

(Phair and Misteli, 2001).

2.2 Computational cell biology

2.2.1 Differences from conventional computational sciences

Software development for non-trivial cell simulation projects is a notably expensive

process. For research projects in the traditional computational sciences, where brute

force computation remains operative, it is reasonable to develop new software for each
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Table 2.1: Some cellular processes and typical computational approaches.
Process type Dominant phenomena Typical computation schemes
Metabolism Enzymatic reaction DAE, PL, FBA, CA.

Signal transduction Molecular binding DAE, stochastic algorithms
(StochSim, Gillespie), diffusion-reaction.

Gene expression Molecular binding, OOM, PL, DAE, boolean networks,
polymerization, stochastic algorithms.
degradation

DNA replication Molecular binding, OOM, DAE.
polymerization

Cytoskeletal Polymerization, DAE (including mechanical models),
dynamics mechanical forces particle dynamics, OOM.

Cytoplasmic streaming Streaming CA (e.g. lattice Boltzman), PDE.
Abbreviations: CA, Cellular Automata; DAE, differential-algebraic equations (rate

equation-based systems); FBA, flux balance analysis; OOM, object-oriented modeling; PL,
power-law, such as S-System and Generalized Mass Action.

project, sometimes in a disposable fashion. Most of the traditional computational

science fields like computational physics are characterized by numerous uniform com-

ponents and a limited number of simple principles. Cell simulation, in contrast, involves

numerous and various components with different properties, interacting in diverse, com-

plicated manners. Typical characteristics of several simulation targets are summarized

in Table 2.2. The design and implementation of simulation software inevitably reflects

the complexity of the problem.

2.2.2 Computational cell biology research cycle

We envision a research cycle of cell biology that incorporates biosimulation technol-

ogy (Figure 2.1). Every step of the cycle completed outside of the wet lab depends

upon sound methods in software engineering. Consider the storage, processing, and

utilization of massive amounts of biological knowledge: only through integration of an

intelligent modeling environment with sophisticated data and knowledge bases can the

challenge of modeling a very large and complex system be accommodated. Although
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Qualitative Modeling

Quantitative Modeling

Run Analysis

Cellular Data 
and Hypotheses

Wet
Experiments

?

Interpretation

substance /CELL/CYTOPLASM/ATP "ATP" 12000;

substance /CELL/CYTOPLASM/ADP "ADP" 14000;



reactor ..... 

Cell Programming

Figure 2.1: Research cycle of computational cell biology.
The wet lab process is extended to include simulation software for a computational cell

biology research project. Qualitative models (e.g. pathway maps) are built from in vivo and
in vitro data and hypotheses, or a reference model (Qualitative Modeling). Then, quantitative

characterization of cellular properties facilitates the transition to a mathematical system
model (Quantitative Modeling). The numerical and discrete properties of the quantitative

model are translated into a modeling language (Cell Programming), and the systemic
behavior is predicted (Run). Results are then analyzed to suggest new hypotheses (Analysis
and Interpretation). Any acquired hypothesis is subsequently tested by wet experiments, and

the cycle begins anew.

this thesis mainly considers the first half of the cycle (from ’Qualitative Modeling’ to

’Run’), a technological stagnance in any one of the steps may form a bottleneck, and

thus threaten the evolution of computational cell biology.
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Table 2.2: Rough comparison of typical numbers characterizing various simulation
targets.

Target Compartments Components Component Interaction
types modes

Prokaryotes ∼ 1013−14 molecules
(E.coli) ∼ 101 ∼ 103−4 species ∼ 101(1) ∼ 101−3(2)

Eukaryotes ∼ 1017−18 molecules
(H. sapiens) ∼ 103−4 ∼ 104−5 species ∼ 101(1) ∼ 101−4(2)

LSI
(Electronic circuit) usually 1 ∼ 106−7 a few 1

CFD
(Fluid dynamics) usually 100−1 ∼ 105−6 1 1

MD
(Molecular dynamics) 1 ∼ 102−6 a few a few

Some typical numbers, which determine computational hardware and software requirements,
are compared among several simulation targets. Large numbers of compartments, component
types and interaction modes characterize cell simulation. Notes: (1) Component types which
require different data structures or object classes are counted. For example, a ’membrane’
object needs a different object class from protein molecules. Different molecular species,
however, are not counted. (2) This number depends on whether or not different enzyme

kinetics equations, which are roughly proportional to the number of enzyme encoding genes,
are counted as different interaction modes. Interaction modes other than enzymatic reactions

include molecular bindings (complex formations), molecular collisions, DNA replication,
cytoplasmic streaming, cytokinesis, and vesicular trafficking.
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2.3 Simulation methods in computational cell biology

As we have seen, simulation of the cell requires heterogeneous approaches according

to the levels of abstraction, scales, and types of information available to construct

simulation models. Here we briefly review some commonly used numerical simulation

techniques.

2.3.1 Ordinary differential equation solvers

Ordinary differential equations (ODEs) is one of the most popular ways of describing

continuous dynamical systems. A distinct strength of this formalism is that, with its

well-established theory in numerical treatments and availability of high-performance

generic solvers described in the following, it can represent virtually any continuous and

deterministic dynamics elegantly.

In computational cell biology, the most popular use of ODE formalism is the macro-

scopic representation of chemically reacting systems by a means of kinetic rate equa-

tions. Elementary and some simple reactions are represented in a form of mass-actions,

for example,

X1 + X2 → X3, (2.1)

and it can be formulated by using the following differential equation

− d

dt
[X1] = − d

dt
[X2] =

d

dt
[X3] = k · [X1][X2], (2.2)

where Xn is the n-th chemical species ([·] denotes concentration), and k is the rate con-

stant. Complex enzymatic reactions are often modeled by using Michaelis-Menten and

King-Altman types of rate equations. The Michaelis-Menten equation corresponding
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to the following simplest enzymatic reaction mechanism

E + S À ES → E + P, (2.3)

is

− d

dt
S =

d

dt
P =

Kcat · ET · [S]
Km + [S]

, ET = E + ES, (2.4)

where S, P , and E are the substrate, product, and enzyme, respectively, and Kcat is

the catalytic constant (the turnover number of the enzyme), and Km is the Michaelis

constant.

Unlike some of other specialized formalisms introduced in the following sections, most

differential equation solvers are generic, and can handle a variety of linear and non-

linear equations employed in cell biology. Some examples of representations of those

phenomena other than rate equations include dynamic changes in environmental factors

such as thermodynamic parameters temperature, pH, and volume.

Initial value problems of ODEs

A system of ODE has a general form like this:

d

dt
x = f(t,x), x(t0) = x0 (2.5)

where x is a vector of dependent variables, f is a vector of derivative functions, and t

is an independent variable. In time-driven simulations, the independent variable t is

usually time. The system is autonomous if the system does not explicitly depend on

the independent variable t;
d

dt
x = f(x) (2.6)
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Time simulation of ODE systems is equivalently reformulated as solving 2.5 for x(t),

where t ∈ R+,0.

Taylor expansion of x in 2.5 at time t0 gives

x(t) = x(t0) +
∑

i∈N

∆ti

i!
· di

dti
x(t0), ∆t = t− t0 (2.7)

or,

x(t) = x(t0) +
∑

i∈N

∆ti

i!
· d(i−1)

dt(i−1)
f(t0), ∆t = t− t0 (2.8)

If analytical differentiation of the system f to arbitrary high order can be derived, this

Taylor expansion immediately gives the solution, or the simulation trajectory, x(t).

Practically, however, ODE representations of biological problems often make use of

nonlinear equations, and it is very hard to construct a general method of solving these

equations analytically. Thus use of iterative numerical methods is the norm. This class

of problem is called the initial value problem (IVP) of ODEs.

Numerical solution of ODEs has a considerable history, and the oldest and simplest

method was given by Euler in 1768. From the definition of derivatives,

d

dt
x = lim

∆t→0

xn+1 − xn

tn+1 − tn
, (2.9)

where

∆t = tn+1 − tn, (2.10)

Now for sufficiently small ∆t we can assume that this formula gives an approximation

of the derivatives at the time point tn,

dx
dt

∣∣∣∣
tn

(= fn = f(tn,xn)) ' xn+1 − xn

tn+1 − tn
. (2.11)
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Comparing this with 2.5,

xn+1 = xn + ∆t · f(tn,xn) (2.12)

we now get the explicit Euler method. It is called explicit because no unknown appears

in the right hand side (RHS) of the equation 2.12.

Consistency and Convergence

Two requisite properties of a numerical method to be useful are consistency and con-

vergence.

A numerical method is consistent when the local truncation error,

e ≡ ∣∣x<tn>(tn+1)− xn+1

∣∣, (2.13)

diminishes to zero as the step size decreases:

lim
∆t→0

e = 0, (2.14)

where e is a vector of the local truncation errors of each variable of the system xi ∈ x.

Here x<tn>(tn+1) is the exact solution with the initial condition x(tn) at time tn. Proof

of consistency of the explicit Euler method is trivial. Using 2.10, 2.11, and assuming

xn = x(xtn), the local truncation error of the method is obtained from 2.12 as

eeuler =
∣∣x(tn+1)− xeuler

n+1

∣∣

=
∣∣∣∣x(tn) +

∑

i∈N

∆ti

i!
· d(i−1)

dt(i−1)
f(tn)− x(tn)−∆t · f(tn)

∣∣∣∣ (2.15)

=
∣∣∣∣

∑

{i:i∈N∧i≥2}

∆ti

i!
· d(i−1)

dt(i−1)
f(tn)

∣∣∣∣. (2.16)
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It can be verified that eeuler → 0 as ∆t → 0, hence the explicit euler method is

consistent. Third and higher components are ignorable when ∆t is sufficiently small,

thus:

eeuler ' ∆t2
∣∣∣∣
1
2
· d

dt
f(tn)

∣∣∣∣. (2.17)

Consequently, it can be seen the error of the method has an order of ∆t2. Thus, a more

formal formulation of the method comes with the local error term of O(∆t2):

x(tn+1) = xn + ∆t · f(tn,xn) + O(∆t2). (2.18)

In simulation, the global truncation error, which indicates accumulation of the local

error after certain period of time, is of practical importance. The global truncation

error of a method is given by

E ≡ |x(ti)− xi|. (2.19)

For simplicity, assuming the step size ∆t is constant, the simulation requires (∆t)−1

iterations for a unit of time. Thus, the accumulation of the error can be denoted as

E = (∆t)−1 · e. (2.20)

It can be read that generally the global truncation error is of order p with respect to the

step size ∆t, when the local truncation error is O(∆tp+1). If a method has the global

truncation error of O(∆tp), then it is said to be consistent with an order of accuracy

p. The explicit Euler method therefore has an consistency of the first order.

One of the most important design goals of numerical methods is to get a good conver-

gence with as small as possible computation cost. A method is said to be convergent
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if

∀i : lim
∆t→0

|x(ti)− xi| = 0. (2.21)

Non-convergent methods are of no use because qualities of outcomes of simulations are

not assured.

Higher order methods

Computation cost of numerical methods is proportional to the inverse of the step size,

1/∆t. One way of increasing the step size without a directly proportional increase in

the error is use of methods of higher order consistency. Many algorithms of the second,

higher, and variable consistency order have been proposed and being used, and most of

them can be classified into two categories: single- and multiple-step methods. Multi-

step methods make use of information calculated in some past steps to conduct the

current simulation step. Single-step methods are ’closed’ in this sense; these methods

utilizes only the current state of the system. Although historically the multi-step

methods once had been a standard, and many popular software packages including

LSODE and DASSL are based on this class of methods, recent advancements in single-

step methods, especially variants of the Runge-Kutta method, is changing the picture.

When applications in computational cell biology simulation is under consideration,

single-step methods have some favorable features over the multiple-step methods; it is

(1) easier to implement the real-time user interaction efficiently, and (2) better suited in

uses in conjunction with other algorithms in multi-formalism simulations (see the next

’requirements analysis’ and the following ’multi-algorithm method’ sections). Also,

it often results in simpler implementation, and unlike multi-step methods, no special

procedure is necessary in simulation start up. For those reasons, this paper mainly

discusses about the Runge-Kutta methods.
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The general form of a s-stage, single-step Runge-Kutta method is:

kj = f

(
tn + cj ∆t,yn + ∆t ·

s∑

i=1

aj,iki

)
, j = 1 . . . s

yn+1 = yn + ∆t ·
s∑

j=1

bjkj (2.22)

where a, b, and c are called Runge-Kutta coefficients, or collectively Butcher array.

Setting s = 2, a second-order explicit Runge-Kutta method can be derived in this way:

xn+1 = xn + ∆t · (b1k1 + b2k2), (2.23)

k1 = f(tn,xn), k2 = f(tn + c2 ∆t,xn + ∆t k1 a2,1), (2.24)

where a2,1, b1, b2, and c2 are the Runge-Kutta coefficients to be decided. Now Taylor

series expansion of k2 to the first order gives

k2 = fn + c2∆t
∂f
∂t

∣∣∣∣
tn

+ ∆t k1 a2,1
∂f
∂x

∣∣∣∣
tn

. (2.25)

Putting 2.25 into 2.23,

xn+1 = xn + (b1 + b2)∆t fn + ∆t2

(
b2c2

∂f
∂t

∣∣∣∣
tn

+ b2a2,1fn
∂f
∂x

∣∣∣∣
tn

)
. (2.26)

Now we want to compare this with the Taylor series 2.8, which, curtailing the third

and higher order terms, becomes:

xn+1 = xn + ∆tf +
∆t2

2
d2

dt2
f (2.27)

= xn + ∆tf +
∆t2

2

(
∂f
∂t

+ f
∂f
∂x

)
. (2.28)
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Then we now have three equations for the four coefficients;

b1 + b2 = 1, b2c2 = 1/2, b2a2,1 = 1/2. (2.29)

These relations are under determined, and there can be infinite number of second-order

explicit Runge-Kutta methods. For example, setting b1 = 0 gives the midpoint method

xn+1 = xn + ∆t · f
(

tn +
∆t

2
,xn + ∆t

f(tn,xn)
2

)
. (2.30)

In this way, higher order methods of arbitrary high order can be derived from compar-

ison between 2.22 and the Taylor series. Use of higher order methods is preferable. As

it can be understood from the equation 2.8 of the Taylor series, the scale of error term

decreases rapidly with regard to the order of the method, and we can take exponentially

large step sizes with the same level of truncation error. This in turn means that we can

complete the simulation with less number of steps, and therefore less accumulation of

round-off error.

It is known, however, the fourth order is a kind of optimum and most frequently used.

Up to the fourth order it just requires the same number of stages of right-hand side

evaluations as the consistency order, while fifth and higher order methods involve more

stages than the order of the method. For example, at minimum 6 stages are necessary

for the fifth order method, s = 7 for sixth order, s = 9 for seventh, and s = 11 for

eighth.
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Error control

A commonly used error control scheme of numerical methods is based on the local

truncation error as follows:

∀i : |ei| ≤ safety · (σabs + σrel · (a|xi|+ b∆t|fi|)), (2.31)

where ei ∈ e is the error of this step of the variable xi, safety is a safety factor (usually

∼ 110%), σabs and σrel are absolute and relative error tolerances, a and b are scaling

factors for the value and derivative of the variable, respectively. In each step, numerical

methods control the error by means of the step size and other parameters such as the

order of the calculation. If the error of at least one variable violates the criteria 2.31, the

solver rejects the step and redos the calculation with a shrunken step size. Conversely,

if the error is sufficiently smaller (say, ∼ 50%) than the right hand side of 2.31, the step

size can be elongated to reduce the computation cost. There can be many strategies of

deciding step sizes. Two most frequently used methods are step halving/doubling and

variations of the following basic equation

∆tnew = ∆t

∣∣∣∣
Tolerance · xn

en

∣∣∣∣
1/s

, (2.32)

where Tolerance is the right hand side of 2.31, and n is the index of the variable which

gave the maximum error in the current step. It must be noted that generally it is

impossible to obtain the exact values of the local truncation errors, and an integrator

must somehow numerically estimate the en.

A frequently used strategy to estimate the local error is to have a pair of Runge-

Kutta calculations of orders p and p + 1. The difference between solutions from these

calculations gives a good approximation of the local error, because as the Taylor series

expansion implies, the value of error term diminishes rapidly to the order. A neat
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trick to obtain this estimation of the local truncation error efficiently is the embedded

Runge-Kutta method, devised by Fehlberg (Fehlberg, 1969). The underlying idea is to

embed a Runge-Kutta calculation of the order p into that of the order p + 1. Table

2.3.1 is the Butcher array of a method called Fehlberg 2(3), that specifies Runge-Kutta

coefficients. Calculating the equation 2.22 using the coefficient in the bi and b∗i columns

give the second and the third order solutions, respectively, and it requires only three

RHS evaluations.

Table 2.3: Butcher array for Runge-Kutta Fehlberg 2(3)

0 aij

cj 1 1
1
2

1
4

1
4

bi
1
2

1
2 0

b∗i
1
6

1
6

2
3

Stability and stiffness

Some differential systems are stiff. Although stiffness is not defined in a mathematically

rigid way, here we give it a casual definition as follows: when the system has at least

two very different time scales, and the trajectory is dominated by the slow movement,

then it is stiff. To put this in a bit more formally, if the fast mode of the system has a

stable manifold, and the state point of the system is captured by it, the system is stiff.

Thus a system can become stiff and non-stiff according to where the state point is.

For example, when the system is making a transition from one state point to a distant

stable manifold, it is non-stiff, while as long as the trajectory is on the manifold, it is

said to be stiff.
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Stiffness can be understood in terms of the Jacobian matrix which is:

J =
∂f
∂x

. (2.33)

Stiffness is sometimes defined as

∣∣∣∣
∂f
∂x

∣∣∣∣∆t · C À 1. (2.34)

where C is a positive constant which represent a typical number of simulation steps

(say, 106 or 1012).

When the system is stiff, all the explicit methods explained so far experience hardship.

Consider the exact solution at time tn, x(tn), on the slow manifold. All the explicit

methods primarily uses values of the derivative functions at the current state point of

the numerical solution, xn, to estimate the state of the system after the some amount of

time ∆t. Any numerical computation involves some amount of error ε, and it puts the

numerical solution slightly off the slow manifold, thus, xn = x(tn)+ ε. When the Jaco-

bian is very large, this error ε magnifies the error in the next numerical solution point

xn+1, and the assumption behind 2.20, that is, the global error is a simple accumula-

tion of the local error, no longer holds. Although the convergence of the computation

2.21 itself is not necessarily affected, the effectiveness of the error control scheme in

2.31 is destroyed. Because slow manifolds are often stable, the fast flows toward the

center of that manifold appear in values of Jacobian around there, and in this case

the trajectories disastrously show diverging oscillations. Even if the solver managed to

detect the error in the step, it results in frequent step rejections, and forces the solver

to take extremely small step sizes to converge.

A measure of tolerance against stiffness is stability of numerical methods. Consider a
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scalar system
dx

dt
= f(x). (2.35)

If the system is linear,
dx

dt
= λx, (2.36)

the stability of a method is defined by the stability function R(·), which is defined as

xn+1 = R(∆t · λ)xn. (2.37)

In the case of the explicit Euler method it is,

xn+1 = (1 + ∆t · λ)xn. (2.38)

Setting ∆t · λ = z,

xn+1 = (1 + z)xn. (2.39)

Thus the stability function of the method is

R(z) = 1 + z. (2.40)

Now the stability region of the method is given by

|R(z)| = |1 + z| ≤ 1, (2.41)

and it is shown that the explicit Euler method is stable only in a very narrow range

−2 ≤ ∆t · λ ≤ 0. More generally, when it is a linear vector system, the constant λ is

an eigen value of the constant coefficient matrix A in

dx
dt

= A · x, (2.42)
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and thus a complex number.

Use of implicit methods overcomes this stability problem. The implicit Euler method,

in a scalar form, has the following form:

xn+1 = xn + f(t, xn+1). (2.43)

Putting the linear scalar system 2.36 into this and rearranging to the form of the

stability function 2.37 gives the stability function of this method:

xn+1 =
(

1
1− z

)
xn. (2.44)

Therefore this method is stable in the region |1 − z| ≤ 1, or, it is stable in an open

region except for the domain 0 < λ ·∆t < 2 in the case of the scalar system.

If the stability region of a method includes the whole left-half of the complex plane

of z, which is the case of the implicit Euler method, it is called absolutely stable, or

A-stable. That is, when the real part of λ is zero or negative, the method is guaranteed

to be stable. Similarly, if the same condition is satisfied for general non-linear systems,

it is said to be B-stable. The order of the global error of the method for the general

non-linear systems is called B-convergence.

The exact solution of the linear problem 2.36 at the next time point tn+1 is easily

derived as eλ∆txn. Now recall the definition of the local error 2.13 again, and using

2.37:

en+1 ≡
∣∣ (ez −R(z))xn

∣∣. (2.45)

A method is called stiffly accurate if

lim
|z|→−∞

∣∣ (ez −R(z))xn

∣∣ = 0. (2.46)
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Now check if the implicit Euler method is stiffly accurate:

lim
|z|→−∞

∣∣∣∣ez − 1
1− z

∣∣∣∣ = 0. (2.47)

If a method is both A-stable and stiffly accurate, it is said to be L-stable or stiffly

A-stable or strongly A-stable. The point here is that no matter how large the damping

force of the system is (even in the case it is infinite), the numerical solution does not,

at least, diverge. This property is important in very stiff problems and some DAE

systems. It is desirable that all numerical methods used are L-stable, but only a few

A-stable methods are known to be L-stable.

Implicit methods

Implicit Euler method imposes solution of non-linear equations to conduct a step of

computation. Newton’s method is most popularly used for this purpose. A Newton

iteration to get xn+1 of 2.43 using the first order Taylor series expansion is:

xm
n+1 = xn + ∆tf(tn+1,xm−1

n+1 ) + ∆t
∂f
∂x

∣∣∣∣
(tn+1,xm−1

n+1 )

(
xm

n+1 − xm−1
n+1

)
, (2.48)

or in a programmable form,

xm
n+1 =

[
xn + ∆tf(tn+1,xm−1

n+1 )−∆t
∂f
∂x

∣∣∣∣
(tn+1,xm−1

n+1 )

xm−1
n+1

]

·
(

I−∆t
∂f
∂x

∣∣∣∣
(tn+1,xm−1

n+1 )

)−1

(2.49)

where m is the counter of the Newton iteration, and I is an identity matrix. The

iteration is terminated when the difference
∣∣xm

n+1 − xm−1
n+1

∣∣ goes below a pre-defined

threshold. In the same way, it is possible to derive implicit variations of higher order

methods.
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Despite their good stability of implicit methods that is necessary to solve stiff systems

efficiently, a drawback is computation cost. In addition to that of its explicit coun-

terpart, it requires m iterations of 2.49 involving a calculation of the Jacobian matrix

and a matrix inversion. Generally, in non-linear computational cell biology problems,

Jacobian cannot be obtained analytically, and numerical differentiation is necessary.

Although the precision of this calculation of Jacobian does not affect the accuracy of

the simulation itself as long as the Newton iteration converges, the cost of this com-

putation is not negligible. The computation cost of a matrix inversion is in the order

of O(N3), where N is the size of the matrix. N becomes proportionally bigger when

higher order methods such as implicit Runge-Kutta are used.

Therefore, a good ODE simulator is supposed to be able to adaptively switch between

explicit and implicit methods automatically detecting stiffness of the system. The best

combination that this thesis suggests is a pair of the fourth order Runge-Kutta with

adaptive stepsizing such as Dormand-Prince (Dormand and Prince, 1980) or Runge-

Kutta Fehlberg (Fehlberg, 1969) method and Radau IIA (Hairer and Wanner, 1996)

methods. Radau IIA is the best implicit Runge-Kutta equation ever known, and is

L-stable, and B-convergent of the order s for the consistency of 2s − 1. Three-stage

(s = 3) version of Radau IIA with the fifth order consistency, sometimes called Radau

5, is often used.

2.3.2 Special types of differential system solvers

In cellular and biochemical simulations, specialized differential equation solvers are

sometimes used. For example, power-law canonical differential equations are often used

to model various types of cellular phenomena such as gene expression and metabolic
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systems. Two of these formalisms are S-System:

d

dt
xi = αi

n∏

j=1

x
gi,j

i − βi

n∏

j=1

x
hi,j

i , i = 1, · · · , N, (2.50)

where N is the size of the system, and αi, βi, gi,j , hi,j are S-system coefficients, and

Generalized Mass Action (GMA):

d

dt
xi = γi

n∏

j=1

x
fi,j

i , i = 1, · · · , N, (2.51)

where γi and fi,j are GMA coefficients.

A distinct feature of this kind of formalisms is that it does not distinguish the structure

of the system from its dynamics. The whole properties of a system can be described by

a single S-System or GMA matrix. When used in simulation, it provides good means of

estimating the network structure of the system as well as kinetic orders. In other words,

by using S-System and GMA formalisms, the difficult problem of network structure

determination can be converted to a matter of numerical parameter estimation, which

is compatible with well established technique of non-linear optimization with numerous

powerful algorithms such as Genetic Algorithms and the modified Powell method. A

special algorithm called ESSYNS method can be used to solve these power-law systems

efficiently (Irvine and Savageau, 1990).

2.3.3 Stochastic algorithms for mesoscopic chemical systems

All numerical treatments explained above are continuous and deterministic, which

means that those description of chemical processes are macroscopic and approximate.

Chemical systems are, at the bottom, composed of discrete molecules, and the assump-

tion behind differential formalisms that state variables change continuously and their
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trajectories are differentiable does not hold, and thus, the differential descriptions fail to

correctly reproduce the stochastic fluctuation in the number of molecules that becomes

evident when copy numbers of involving molecular species of reactions are small.

Some variations of stochastic simulation algorithms for chemically reacting systems

both in exact and approximate consequences of the chemical master equation are in-

troduced here.

Chemical master equation

Consider a finite and fixed volume Ω in which M reaction channels connect N molecular

species. Temperature and other physical parameters that affect the reaction rate are all

constant. In meso-scopic representation of the system, we do not track motion of each

molecule. Then the state of the system is a vector of random variables X(t) ∈ NN . It

also assumes that occurrences of nonreactive collisions are so frequent that (1) it stirs

the system between any two reactive collisions, and (2) each occurrence of reaction

is a Markov process. Strictly speaking, in cell biology, most systems are in liquid

phase and, unlike gas phase, once two solute molecules encounter, it is highly probable

that these molecules experience numerous successive collisions because of the existence

of solvent, making reactions non-Markovian. However, here we neglect this in the

following discussions because experiences so far have shown that we can construct

precise simulation methods without taking this non-Markovian argument into account.

Now the propensity function

aj(X)dt, (2.52)

is defined as the probability that the j-th reaction will occur in Ω in a infinitesimal
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time interval [t, t + dt), given X = X(t). The state change vector

νj , (2.53)

whose each element νj,i specifies the number of molecules of the i-th species changed

by an occurrence of the j-th reaction.

If the reaction is elementary, the propensity function has the following form:

aj(X) = cjηj , (2.54)

where cjdt gives the probability that a pair of reactant molecules will collide and react

in a unit time interval, and ηj is the number of distinct combinations of such reactant

molecules in the state X. If the reaction has the form of (1) X1 → X2 · · · , ηj = X1,

if it is (2) X1 + X2 → X3 · · · , then ηj = X1X2, and if (3) 2X1 → · · · , then ηj =

max(X1(X1−1)/2, 0). The macroscopic rate constant kj of the reaction is related with

cj in: (1) kj = cj , (2) kj/Ω = cj , (3) 2kj/Ω = cj .

Given the propensity function and the state change vector, an exact and complete

description of the chemically reacting system evolving from the initial condition X0 at

time t0 can be derived:

∂

∂t
P (X, t|X0, t0) =

M∑

k

[ak(X− νk)P (X− νk|X0, t0)− ak(X)P (X|X0, t0)] . (2.55)

This is called the chemical master equation (CME). This formalism was initially pro-

posed as a simple stochastization of macroscopic rate equations (McQuarrie, 1967), but

has recently given a rigid micro-physical ground (Gillespie, 1992).

By definition of X, (that is ∈ NN ), CME 2.55 is a system of a huge number of differential

equations, and cannot be solved in any way (analytical or numerical) unless it represents
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a very simple system (for example, a single ion channel whose state is either open or

close).

Exact stochastic simulation algorithms

Although the CME describes everything about a chemical system, it cannot be used

in simulations directly. What we need is a method of trajectory realization based on

the CME, which does not require evaluation of the whole state space defined in the

system. One way to reduce the computation cost to a point where we can handle with

our digital computers is a kind of lazy evaluation, that is, at each simulation step,

calculating the values of propensity functions at neighboring state points to the current

state point.

Gillespie proposed the next reaction density function (Gillespie, 1976, 1992),

p(τ, j|X, t) = aj(X) exp

(
−τ

M∑

k

ak(X)

)
, (2.56)

which defines the probability that the next reaction in the system occurs in the in-

finitesimal time interval [t + τ, t + τ + dτ), and the reaction is the j-th reaction.

With this next reaction density function, a step of simulation is defined as a procedure of

generating a pair of numbers (τ, µ), that indicates the step size and the state transition

difference function X(t+τ) = X(t)+νj . There can be some possible ways of generating

this real-integer pair of random numbers, and one of the straightforward ways is called

the Direct method. The joint density function 2.56 can be rewritten as a composition

of two simple functions for τ and j, respectively.

p(τ, µ|X, t) = p1(τ |X, t) · p2(µ|X, t), (2.57)
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where p1(τ |X, t) is the probability that the first firing of any of the reaction channels

occurs at time t + τ , and p1(µ|X, t) is the probability that µ is the reaction that fired.

These two functions are defined as:

P (τ |X, t) =
M∑

k

ak(X) exp

(
−τ

M∑

k

ak(X)

)
, (2.58)

Pr(µ|X, t) = aµ(X)
/ M∑

k

ak(X). (2.59)

In numerical computer simulations, a type of random numbers that is available in the

most efficient way is the uniform, unit-interval random distribution U(0, 1). To generate

τ according to 2.58 from a sample of the uniform distribution, u1, the following Monte

Carlo inversion function of 2.58 is used:

τ =

(
M∑

k

ak(X)

)−1

· ln
(

1
u1

)
. (2.60)

Determining µ is then a simple task. Using another number u2 taken from the uniform

random number generator,

µ = min{n : n ∈ N ∧
n∑

k

ak(X) > u2

∑

l

al(X)} (2.61)

Main portion of the computation cost of the Direct method comes from two random

number generations and calculation of M propensity functions per a simulation step.

Here is a procedural definition of the Gillespie’s Direct method:

1. Initialize: set initial number of molecules, and reset t (t← 0).

2. Calculate the values of the propensities (ai) for all the reactions.

3. Choose τ according to 2.60.
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4. Determine the next reaction µ according to 2.61.

5. Change the number of molecules: X← X + νµ.

6. t← t + τ .

7. Go to (2).

Another approach to the generation of the (τ, µ) pair is the First Reaction method, also

devised by Gillespie(Gillespie, 1976). It generates tentative τs for all reaction channels,

τl =
1

al(X)
· ln

(
1
u

)
, (2.62)

where u is a unit-interval uniform random number. Adopt the smallest τl as τ :

τ = min
l

τl. (2.63)

µ is then the reaction which got the smallest τl:

µ = l s.t. τl = τ. (2.64)

This algorithm requires M random numbers and M calculations of the propensity

functions, thus runs slower than the Direct method. However, it gives a basis for the

recently proposed Next Reaction method, which we will discuss next.

The First Reaction method in a procedural appearance is like this:

1. Initialize: set initial numbers, and t← 0.

2. Calculate the values of the propensities (ai) for all the reaction channels.

3. For each of the reactions, calculate a putative time τi of the next occurrence of

the reaction, according to the propensity calculated in (2).

44



2.3. SIMULATION METHODS IN COMPUTATIONAL CELL BIOLOGY

4. Pick a reaction whose τµ is the least. τ ← τµ.

5. Change the number of molecules: X← X + νµ.

6. t← t + τ .

7. Go to (2).

Twenty four years after Gillespie’s original work (Gillespie, 1976), Gibson published a

paper that proposes a vastly improved version of the First Reaction method, called the

Next Reaction method, in 2000 (Gibson and Bruck, 2000). The core idea of the new

method is to limit recalculation of τl to really necessary cases. In the First Reaction

method, τl for each reaction is calculated in each simulation step. But with the Marko-

vian assumption of the meso-scopic formalism, the recalculations are not necessary for

reactions not affected by the current reaction µ. To take full advantage of this good

opportunity of optimization, this method (1) uses absolute time, rather than relative

time in the Direct and the First reaction methods, (2) dependencies between reactions

are pre-calculated at simulation start-up, and (3) the absolute putative time τl of each

reaction is stored in a dynamic priority queue data structure to speed up the operation

of changing the value of τl.

The cost of this algorithm is just one random number generation and evaluations of the

propensity functions affected by the current reaction. This is supposed to be near or

perhaps on the theoretical limit as long as the simulation precisely tracks each occur-

rence of reaction events. This method has to, however, maintain the priority queue, of

which cost is typically O(log2(M)) integer operations. Because the numbers of other

operations such as the random number generation and propensity function evaluations

grows proportionally to the density of the stoichiometry matrix, this logarithmic term

can form a bottleneck in computation speed for large Ms. The point of equilibrium be-

tween costs of the priority queue and other operations is implementation and platform
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dependent. It is worth noting, however, that recent advancements in pseudo random

number generation methods such as the Mersenne Twister algorithm(Matsumoto and

Nishimura, 1998) and integration of multiple high-performance floating-point operation

units into CPU chips have been lowering the equilibrium point of M . Vasudeva and

Bhalla (2004) has some practical performance comparisons of these methods.

Below is the step-by-step instructions for the Next Reaction method:

1. Initialize: set initial numbers, t← 0, and for each reaction i, calculate a putative

time τi.

2. Pick the reaction with the least putative time τµ.

3. Change the number of molecules: X← X + νµ.

4. t← τµ.

5. For each affected reaction α,

(a) calculate new aα,new.

(b) if α = µ, calculate new τα.

(c) if α 6= µ,

τa ← aα,old

aα,new
(τα − t) + t.

6. Go to 2.

The scaling operation in step 5(c) is an optimization to avoid using extra random

numbers, which is effectively equivalent as reusing the random numbers generated in

the previous step. Legitimacy of this random number reusing is discussed in detail in

Gibson and Bruck (2000). Of course, generating a new random number here and doing

the same as 5(b) yields the same result.
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To summarize, as long as the number of reactions is sufficiently large, and the computa-

tion needs to be exact (each occurrence of a reaction must be counted), Gibson’s Next

Reaction method is the best known way of realizing simulation trajectories according

to CME.

Approximate stochastic simulation algorithms

Stochastic simulation methods can be approximate. For macroscopically infinitesimal

time interval τ that does not change values of the propensity functions appreciably, the

number of firings of j-th reaction Kj in the time interval [t, t+ τ) can be approximated

that

Kj(τ ;X(t), t) ≈ P(aj(X(t)), τ), (2.65)

where P is the Poisson random variable. The net change L(τ ;X(t)) of the system state

approximated from X(t) after τ is

L(τ ;X(t)) =
∑

j

Kj(τ ;X(t))νj . (2.66)

A simulation step is then defined as

X(t + τ) = X(t) + L(τ ;X(t)). (2.67)

This procedure is called tau leaping (Gillespie, 2001). To ensure the τ to be macro-

scopically infinitesimal, it must satisfy the following inequality:

∀j :
∣∣aj(X(t) + L(τ ;X(t)))− aj(X(t))

∣∣ ≤ ε ·
∑

k

ak(X(t)), (2.68)

where 0 < ε¿ 1 is the error control parameter. An alternative for the right hand side

of this condition is proposed to be ε ·maxk ak(X(t)). Either way yields essentially the
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same result as ε is an artifact.

There can be many possible ways of finding the largest possible τ that meets the

condition 2.68, and one of the best known procedure is given in Gillespie and Petzold

(2003). Denote the estimated difference of the propensity function in the left hand side

of 2.68 as ∆aj(τ,X),

∆aj(τ,X(t)) ≡ aj(X(t) + L(τ ;X(t)))− aj(X(t)) (2.69)

It is a random variable, and 2.68 can be reformulates as

∀j :
∣∣〈∆aj(τ,X(t))〉∣∣ + sdev(∆aj(τ,X(t))) / ε ·

∑

k

ak(X(t)), (2.70)

where 〈·〉 is the mean and sdev(·) is the standard deviation of the random variable.

This bounds about two thirds of the samples of ∆aj(τ,X(t)) to be less than the right

hand side. Because of the arbitrariness in the specification of ε, this is assumed to work

just fine in simulations. To calculate these numbers efficiently, take a first order Taylor

expansion of 2.69.

∆aj(τ,X(t)) ≈ L(τ ;X(t))) ·∇aj(X(t))

=
∑

i

Li(τ ;X(t))
∂aj(X(t))

∂Xi
. (2.71)

When only elementary reactions are considered, this partial differentiation should easily

be calculated. Recalling 2.65 and 2.66, this becomes

∆aj(τ,X(t)) ≈
∑

j

∑

i

∂aj(X(t))
∂Xi

νj,i · Pj(aj(X(t)), τ). (2.72)
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Setting

hi,j(X(t)) ≡
∑

i

∂aj(X(t))
∂Xi

νj,i, (2.73)

and using the fact that 〈P(a, b)〉 = var
(P(a, b)

)
= ab,

〈∆aj(τ,X(t))〉 ≈
∑

j

hi,j(X(t))aj(X(t))τ, (2.74)

var (∆aj(τ,X(t))) ≈
∑

j

(
hi,j(X(t))

)2
aj(X(t))τ, (2.75)

hence

sdev (∆aj(τ,X(t))) ≈
√∑

j

(
hi,j(X(t))

)2
aj(X(t))τ . (2.76)

By letting 2.74 and 2.76 into 2.70, and solving for τ gives a procedure of determining

the leaping interval. However, the square root over τ in 2.76 makes the solution slightly

costly to be evaluate in every step of the simulation. An essentially equivalent way,

again owing to the arbitrariness of the value of ε, to this that Gillespie suggests is to

ensure each of 2.74 and 2.76 separately bounded by the limit.

∀j :
∣∣〈∆aj(τ,X(t))〉

∣∣ ≤
∑

k

ak(X(t)) ∧ sdev(∆aj(τ,X(t))) ≤
∑

k

ak(X(t)). (2.77)

Finally we get the formula to find the largest possible τ that does not violate 2.68:

τ = min
j

(
min

(
ε
∑

k ak(X(t))∑
j hi,j(X(t))aj(X(t))

,
(ε

∑
k ak(X(t)))2∑

j (hi,j(X(t)))2 aj(X(t))

))
. (2.78)

When τ is near or less than (
∑

k ak(X(t)))−1, which is the expected mean of the step size

taken by the exact methods, the tau leaping method loses the performance advantage,

and exact methods should be used for the step.

The system of propensity functions can be stiff in the same sense as in deterministic

ODE systems, and the implicit scheme, which is exactly the same strategy to fight it,
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can be used. Rathinam et al., (2003) implicitized the propensity function part of the

tau leaping equation 2.67, leaving the random variable part explicit.

X(t + τ) = X(t) +
∑

j

νaj(X(t + τ))τ +
∑

j

ν (P(aj(X(t), τ)− aj(X(t)))) . (2.79)

Here the equation is divided into the deterministic mean part and the stochastic fluc-

tuation, and the state of the system at the next time point t + τ , which is unknown,

appears only in the deterministic part. In numerical implementations, the third term

of 2.79, which includes the Poisson random variables, are calculated first using samples

of the random variables, and then the value of the second term is determined by using

the Newton iteration as in essentially the same way we used to solved the implicit Euler

equation in 2.49. This method 2.79 is called the implicit tau leap method.

When all the reaction channels fire a very large number of times in [t, t + τ), and the

leap time τ is still small enough that it can be assumed that the propensities of all

the reactions does not change their values so much, the following simplification to the

tau-leaping can be made: If the mean of the Poisson random variable P(aj(X(t), τ)),

which is aj(X(t))τ is very large, it can be approximated by normal random variables.

Therefore 2.65 becomes

Kj(τ ;X(t), t) ≈ P(aj(X(t)), τ) (2.80)

≈ N (aj(X(t))τ, aj(X(t))τ) (2.81)

= aj(X(t))τ +
√

aj(X(t))τ · N (0, 1). (2.82)
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Using this consequence and 2.66, the tau-leaping method 2.67 becomes

X(t + τ) = X(t) +
∑

j

(
aj(X(t))τ +

√
aj(X(t))τ · N (0, 1)

)
νj (2.83)

= X(t) +
∑

j

νjaj(X(t))τ +
∑

j

νj

√
aj(X(t))τ · N (0, 1). (2.84)

This is called the Langevin method, because if τ is replaced with dt it is identical to

the Chemical Langevin equation (CLE).

X(t + dt) = X(t) +
∑

j

νjaj(X(t))dt +
∑

j

νj

√
aj(X(t))N (0, 1)

√
dt. (2.85)

Unlike the exact methods and the tau leaping methods, state variables in the Langevin

method are continuous.

Consider a thermodynamical limit, where we assume the limit of infinite volume without

changing concentrations of the species. Then the number of reaction events occurring

in the time duration τ in the infinite volume becomes infinite. In this case, the third

term of the right-hand side of the Langevin equation 2.84 vanishes.

X(t + τ) = X(t) +
∑

j

aj(X(t))τνj (2.86)

This is essentially the explicit Euler method for ODEs. From this observation, it can

be concluded that the exact methods, tau leaping and Langevin methods are a family

of simulation techniques that spans multiple scales. In the limit where the system is

described with statistics rather than individual reaction events, the approximation of

using deterministic differential equations is justified.
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2.3.4 Cellular automata

Cellular automata (CA) is a structure:

C = 〈L, S, N, F 〉, (2.87)

where L is an infinite regular lattice of cells, S is a finite set of states , N is a set

defining neighbors, and F is a state transition function. F has the following form:

F : {sj}j∈N(i) → s (2.88)

where sj ∈ S is the state of the jth cell, and i ∈ L is the current cell. This function

can be stochastic.

The origin of CA traces back to John von Neuman’s work in theoretical computer sci-

ence. Subsequently, it became a major way of investigating qualitative simulations of

complex phenomena in diffusion-reaction systems, such as for excitable media and Tur-

ing patterns. Recently it is becoming popular as a means of quantitative modeling and

simulation of physical phenomena such as fluid dynamics and diffusion-reaction(Dawson

et al.,, 1993). Related to computational cell biology is a type of CA for enzymatic re-

action networks with spatial extent represented by molecular diffusion proposed in

Weimar (2002). Patel et al., (2001) has an application of CA to the model of tumor

growth. Ermentrout and Edelstein-Keshet (1993) has some more references.

2.3.5 Other methods and summary

We reviewed some simulation methods in computational cell biology, and there are

several more schemes those are already in popular use or still under development. An

instance of a recent development is a hybrid dynamic/static pathway simulation method
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that combines conventional ODE-based rate equations with a static, flux-based sub-

components (Yugi et al.,, 2002). The static part is based on a time-less metabolic

flux analysis (MFA), and its (re-)calculation is triggered by simulation steps of the dy-

namic, ODE sub-components. Some more examples are Monte-Carlo Brownian dynam-

ics method originally developed for simulation of micro-scopic simulation of synaptic

transmission (Bartol et al.,, 1996), boolean network, coupled map lattice, and difference

equations.

This diversity in computational approaches is a natural consequence of the heterogene-

ity and multiple scales of the cell as a dynamical system, and therefore is an obvious

reason of the need for the multi-formalism modeling and multi-algorithm simulation

discussed in the next section.

2.4 Requirements analysis

In this section, the necessary features of what we consider to be a flexible and multi-

purpose biosimulation software platform are identified and described. Critical features

common to the vast majority of modern platforms, such as model scalability and ef-

ficiency, are ignored, whereas those not present in all software form the primary fo-

cus. Whilst we recognize that these requirements may vary according to many factors,

including simulation granularity, scale, and purpose, we hope to establish a generic

description of a cellular platform.

The following is the list of seven specific requirements that we argue to be important

for design and implementation of cell simulation software.

1. Multi-algorithm simulation

2. Multi-timescale simulation
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3. Object-oriented modeling

4. Object-oriented simulation

5. Runtime user interaction

6. Variable model structure

7. Spatial modeling and simulation

In the following sections, we give a definition, rationale, and some typical or possible

solutions to each of these requirement.

2.4.1 Multi-algorithm simulation

In the cell, as we have seen in the previous sections, various components with different

properties interact in diverse manners. All cellular subsystems are highly non-linear,

and couplings of the subsystems are often non-linear as well. The nonlinearity indicates

that the whole system is not equivalent to the sum of the subsystems. Although a

subsystem in isolation can be investigated to some extent by assuming steady and

simplified boundary conditions, the real behavior and role of the subsystem cannot be

elucidated unless it is considered as part of the whole.

Cell simulators must therefore allow simulation of cell subsystems in both isolated and

coupled forms. Simulation of coupled subsystems requires performing computations

on mutually interacting subsystems with different computational properties on a single

platform. There is, however, no universal algorithm which can efficiently conduct simu-

lation of all the subsystems at once, and so simulators must allow multiple computation

algorithms to coexist in a single model.

In order to support multi-algorithm computation, the software must therefore provide
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a single abstract programming interface, which (1) allows indiscriminate interaction

among the modules, and (2) gives frontend programs a standard means of visualizing

and manipulating said modules. This also means that the implementations of the

algorithm modules must be isolated from the system-provided common interface.

Related to this necessity of multi-algorithm simulator is representation schemes of the

target physical entity (the cell) in computer. The primary state variables of a cell model

are the quantities of species, and these can be modeled using two different approaches.

In the first, each state variable is a positive real number, and the fractional parts

are not discarded; this number format is suitable for working with the empirical rate

equations of biochemistry. The second approach keeps molecular quantities as natural

numbers, and a variety of methods may be used to maintain the semantics of the

fractional part, and these can be either stochastic or deterministic. In addition, realistic

cell models usually require a mixture of continuous state variables like temperature,

electric potential, and free energy, and discrete variables like the state flags of multi

state molecules (e.g. transiently modified proteins). Therefore, the simulator needs to

handle both types of positive, non-zero molecular quantities, real negative or positive

numbers, and discrete states of molecules.

2.4.2 Multi-timescale simulation

Cell simulators must be able to handle the coexistence of a wide range of time scales in

a single cell model. Typical time scales of cellular phenomena vary from femtoseconds

(10−15s) to hours (103s). One example of the relatively high resolution necessary for

realistic simulation of cellular behavior is found in signal transduction systems depen-

dent on molecular bindings, these need step sizes on the order of (10−6s). Metabolic

pathways, on the other hand, are characterized by enzymatic reactions, and have close

to milli-second (10−3s) time scales. Gene expression systems are microscopically driven
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by macromolecular interactions (below 10−6s), yet resulting phenomena are often re-

ported and analyzed in minutes, hours, and days (101s− 104s).

In differential equation based simulators, such ’stiffness’ is usually overcome by adopt-

ing implicit ’stiffness-proof’ integration algorithms. Although these techniques can be

used in part for ODE based subsystems, they are not fully applicable to multi-algorithm

simulators. Implementation of a multi-timescale and multi-algorithm simulator requires

a new scheduling algorithm which can orchestrate many subsystems running with dif-

ferent algorithms and variable temporal step sizes.

2.4.3 Object-oriented modeling

Cell modeling involves the integration of a diverse array of processes. As outlined in

Table 2.2, this is a very different situation from typical modeling problems in physics

where computer simulation has been widely applied for quite some time. Fluid mechan-

ics, gravitational N-body problems, and quantum field simulations are characterized by

numerous uniform components (atoms, particles) that are governed by a single or a few

equations (e.g. Navier-Stokes equation, Newton’s equation, quantum wave functions).

Preparation of structural information and initial conditions for such simulation models

is relatively easy. If the components are uniform, one can assume that the values of

some or most constants and parameters are common among the components. If there

are only a few interaction modes, one does not need to carry out surveys and derive an

equation for each of the reactions. Initial conditions are often automatically generated.

The major challenges in these problems for software designers are maximizing com-

putational efficiency in existing hardware and making the simulation software flexible

without sacrificing the computational efficiency.

In cell simulation and modeling, one must either dig through the literature or conduct
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wet experiments to identify reaction mechanisms, derive appropriate rate equations,

and obtain values of rate constants. This phase of research, review, data acquisition,

and model construction often takes more than 50% of the man hours available to the

project. Of the remainder, most are spent in model debugging. A proportionately

greater amount of time is distributed amongst these activities as the model gets larger,

and intuition and productivity are more important than computational efficiency. Most

simulation engines will have similar runtime efficiencies anyways if the same kind of

algorithms are used, and the greatest performance increase can be achieved in the

pre-simulation phases. This means that

1. the modeling frontend should directly reflect the biologist’s understanding of the

cellular system, and,

2. the constructed models should be modularized for reuse in whole or in part as

sub-models in a different context.

Ontological diversity is inherent to biology. Although it is somewhat obvious that there

is no universal modeling scheme which can be used to model all subsystems elegantly

and intuitively, cell simulators must attempt to provide one, or biological models will

never be able to meet the staggering complexity of life. Biology is a science of ex-

ceptions, and new, non-intuitive discoveries are made all the time — as an example

(amongst millions), we ask how one could predict with any confidence that non-coding

complementary RNA might inhibit translation of the coding mRNA. Such consider-

ations lead the software designer to provide a cell modeling framework that comes

packaged with as few presumptions as possible.

The object-oriented paradigm provides an appropriate solution. This programming

model is characterized by a data-centric framework in which procedures are tied to the

data. The actors of a system are described as ’objects’, which have data and methods
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(operations on this data) as their ’properties’, and the objects are grouped into ’classes’,

interacting with each other by exchanging ’messages’. Inheritance (is-a), aggregation

(has-a, consists-of), and dependence (uses-a) relationships may exist between classes.

These relationships can be described in the Unified Modeling Language (UML), and

coded with object-oriented computer languages such as C++, Java, Smalltalk and

SIMULA. The object-oriented paradigm was in fact originally devised as a means of

programming discrete simulations. Also relevant to the biosimulation problem is the

fact that many object-oriented data structures are known to have strong affinity with

databases, owing to their data-centric nature. It is also important to note that owing

to its widespread ’world domination’, effectively everyone with a software engineering

background is supposed to be familiar with this paradigm, and also it is very easy to

get educational resources.

The object model of cell simulators needs to be developed so that:

1. Users are able to define their own classes.

As suggested above by the RNA example, a cell model might require new data

structures currently not provided by the simulation engine.

2. Abstraction support (e.g. via base classes) is provided for common use by any

algorithm.

This allows interactions between different algorithms and subsystems, and across

scales of time and space, critical features of an integrated simulation model.

2.4.4 Object-oriented simulation

Traditionally, simulation models of dynamic systems are either described in equation

based form and then compiled into computer programs, described in an object-oriented
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fashion before translation to an equation based form, or written directly as computer

programs. The second of these appears to provide the best of both worlds: clean design

in the modeling phase and efficient numerical routines in the simulation phase.

Although computationally efficient, all three of these approaches have several inherent

disadvantages:

1. The semantics of the model are not preserved.

Modeling knowledge about structural and/or behavioral features of a system are

abstracted out, and only implicitly represented in the mathematical description.

2. Model and program reuse is limited.

If the model and its internal representation do not directly reflect each other,

changes in one side require a change on the other, making it difficult to reuse

models in modified contexts.

3. The classical flat description hides critical features and assumptions, such as the

order of computation and the causal structure of a model.

Hitz and Werthner (1997) showed how object-orientation can help to overcome these

drawbacks in dynamic system simulation, and how the paradigm, which is well estab-

lished in discrete event-driven simulations, can even be extended to dynamic system

simulations where differential or difference equations are normally used.

Another advantage of using object-oriented data structure inside the simulator is a one-

to-one relationship between the model and simulation data structures. Saving, loading,

and resuming simulation sessions can be made easy by implementing support for object

persistence technology. Keeping the simulation in the same semantic plane as the model

helps users to understand the ontologically complicated system via simulation results

and runtime interaction.
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2.4.5 Runtime user interaction

One purpose of a simulation project is to characterize the dynamic behavior of a target

system. Mathematical analysis methods such as metabolic control analysis, bifurcation

analysis, and parameter estimation are usually automated and user interaction is not

necessary.

However, as the model gets larger and more complicated, the advantages of runtime

interaction with the simulation engine become significant. Even for prototype models in

early stages of development, modelers would like to observe the effects of stimulations at

arbitrary time points. In the debug phase of a modeling project, runtime interactions

constitute a powerful means to check for the existence and location of ’bugs’ in the

model. Debugging support is often neglected in cell simulation software, but experience

has shown that it can eliminate some severe bottlenecks, especially in large-scale, multi-

author projects. After completion of the model, dynamic properties can be investigated

intuitively through runtime interactions, and the insight gained is educational to say the

least; indeed, interaction with a model in such a fashion could help bring cell simulation

to the classroom.

It goes without saying that the same interaction functionality is required for predefined

scripts that dynamically affect the variables and structure of the model, and so we argue

that simulators need to provide users with both batch-mode and runtime graphical

interaction mode user interfaces in a seamless manner.

2.4.6 Dynamic structure model

Cells are dynamic environments in which the components are constantly being syn-

thesized, processed, and degraded. Structural properties of the system are subject to
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change throughout the entire cell cycle, a clear example being the events associated

with cell growth and division. With the differential equation based approach, for ex-

ample, representation of structural change and the dynamic synthesis and degradation

of components requires convoluted mathematical techniques. Even if the model is con-

structed in an object-oriented fashion in the modeling phase, it becomes extremely

difficult to explore the dynamic nature of the system during simulation if using a com-

piled representation.

Object orientation, however, does not immediately mean that it can easily support the

dynamic structures. However, a combination of object-orientation and discrete-event

simulation formalism may provide a useful foundation of intuitive representation and

efficient implementation of the simulator that supports dynamically changing model

structures.

2.4.7 Spatial modeling and simulation

Even within a single compartment of a cell, there exist many systems where material

distributions are not uniform in space and the localization of molecules plays an impor-

tant role. Examples might include vesicle trafficking in the secretory process, diffusion

of ions and molecules after crossing a membrane, and propagation of an action potential

along the axon of a nerve fiber.

In whole or multi cell scale modeling, the assumption that chemical concentrations

are homogeneous throughout a given compartment is reasonable if the reactions are

confined to a small region of space, and when the diffusion rate is fast compared to

the rate of localized reaction. However, if neither of these conditions is met, which

will often be the case for whole or multi cell-scale modeling, the spatial information

support becomes essential. Thus, simulation engines require native support for factors
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such as the structure and location of compartments, spatial concentration gradients for

all species, and interactions between moving molecules.

One solution for incorporating spatial information into the simulation of cellular pro-

cesses is to use a finite element mesh to divide the sub-cellular space, and describe

the location of each element with some coordinate system. Any spatial support as

such requires an interface shared by all algorithm modules. The syntax of geometric

coordinates would be defined by a common framework, whereas the semantics of the

coordinates would be defined by each computation module. The interface needs to de-

scribe not only molecular concentrations for systems with a large number of molecules,

but also individual molecules for systems with a small number of particles, and for

purely structural phenomena.

If multiple computation modules with different simulation algorithms and spatial/time

step sizes are used to allow diverse simulation schemes with a wide range of temporal

and spatial scales to coexist, spatial information support may become extremely com-

plicated. The spatial interface therefore not only needs to be flexible enough to allow

support for every module, but also needs to be simple enough to prevent confusion.

Enabling multiple pluggable modules with contrasting semantics, dimensions, and co-

ordinates to share a common syntax or description method via common framework

will allow both requirements to be met. Thus, a generic, flexible, and simple spatial

information interface is a key feature of next generation simulation engines.

2.5 Existing software platforms and projects

Cell simulation is a relatively new area of computational science, but attempts to

numerically simulate biochemical pathways has a considerable history. This section

briefly reviews available software related to this work.
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2.5.1 General purpose simulation software

One of the oldest publicly available software packages specialized for rate equation

based numerical simulation of cellular processes is KINSIM (Barshop and Frieden,

1983). It is a DOS application which is still actively used by biochemists for kinetic

analysis of enzyme reaction systems. GEPASI (Mendes, 1993) is also a rate equation

based simulator with an integrated and easy to use interactive Windows GUI, and

is widely used by biochemists for both research and education. GEPASI’s successor,

COPASI, is being developed with a focus on large scalability and distributed parallel

computing. DBSolve (Goryanin et al.,, 1999) is another ODE-based simulator. ProMoT

(Ginkel et al.,, 2003) is a Lisp based object-oriented modeling environment that uses the

DIVA numerics solver as a simulation backend. A commercial tool for block-oriented

generic simulation of complex systems, SCoP (Kootsey et al.,, 1986) is used to run

differential and difference equation based cell models. A-Cell (Ichikawa, 2001) is a GUI-

based piece of software used to construct biochemical reactions and electro-physiological

models of neurons and other types of cell. Bio/Spice (McAdams and Arkin, 1998) was

initially intended for genetic circuit simulation, and is now being developed as a generic

modeling and simulation environment linked to object-relational databases. Jarnac, or

SCAMP II, is a successor of the SCAMP simulator (Sauro, 1993), and equipped with

a powerful and flexible scripting language that enables users to program a dynamic

object-oriented cell model. Virtual Cell (Loew and Schaff, 2001) provides an intuitive

WWW Java applet based modeling environment which allows modelers to construct

spatial and biochemical models in both biological and mathematical semantic planes,

and has support for empirical 3D data from microscopy. PLAS is a simple yet powerful

tool for modeling, simulation, and analysis of S-Systems. And still many groups use

a generic modeling package such as Mathematica or MatLab, although these tools are

not customized to support biosimulation per se.
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2.5.2 Specialized simulation software

StochSim (Le Novere and Shimizu, 2001) is a stochastic biochemical simulator in which

individual molecules and molecular complexes are represented as individual software

objects. Its unique algorithm makes for effective simulation of biochemical systems like

the bacterial chemotaxis signaling pathway, where only a small number of molecules

are involved and some of them are multi-state. MCell(Bartol et al.,, 1996) is another

simulator in which individual molecules are treated not statistically, but individually,

with a Monte Carlo type random-walk algorithm for Brownian dynamics. MCell is

designed for the simulation of interactions between ligands and binding sites on recep-

tors, enzymes, and transporters (amongst other molecules). Both simulators, StochSim

and MCell, are somewhat infrequently used for simulation of sub-cellular dynamics be-

cause of high computational costs, yet the algorithms employed are likely to become

indispensable if given appropriate roles in a multi-algorithm whole cell model.

2.5.3 Software platforms and languages

The Caltech ERATO Kitano Systems Biology Project is developing an XML-based

Systems Biology Markup Language (SBML) as a means of interchanging biosimulation

models (Hucka et al.,, 2003). The group has set out to encompass all the features of

Bio/Spice, DBSolve, E-Cell, Gepasi, Jarnac, StochSim, and Virtual Cell. A similar

modeling language being developed by the University of Auckland and Physiome Sci-

ences is CellML (Headley and Nelson, 2001). The Systems Biology Workbench (SBW)

is also being developed by the Caltech ERATO team(Hucka et al.,, 2002). SBW is a

distributed object computing environment for biological modeling and simulation. It

provides an infrastructure that unifies various software components like model editors,

simulators and data analyzer/visualizers. Using SBML as its language, it may well
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become the standard platform of model exchange, data exchange, and inter-operation.

2.6 Conclusion

A new computational approach is needed for simulation at the whole cell scale, and

sophisticated software engineering plays a vital role in cell simulation projects. Al-

though simulation of biochemical processes has a considerable history, the approach

of integrating partial simulation models into a whole or multiple cell model is still an

emerging field.

Let us see the seven requirements of cell simulator again;

1. Multi-algorithm simulation

2. Multi-timescale simulation

3. Object-oriented modeling

4. Object-oriented simulation

5. Runtime user interaction

6. Dynamic model structure

7. Spatial modeling and simulation

This list is a reorganized version of the earlier version that has first been given in a

previous work Takahashi et al., (2002).

The requirements 1 (multi-algorithm) and 2 (multi-timescale) are tackled in chapter 3

by developing a new computational framework called the ’meta-algorithm’, which can

drive multiple sub-model components running on different simulation algorithms and
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different step-sizes. This new framework has a good affinity with object-orientation,

and in chapter 4 we discusses how E-Cell System presents a solution to the requirement

3 (OO modeling). In the chapter we will also see that the design of the software allows

frequent and real-time interactions between the simulator core and frontend software,

and the requirement 5 (runtime user interaction) is met. Chapter 5 has some discussions

on how the computational framework introduced in Chapter 3 and the software system

described in Chapter 4 can be further extended to give good solutions to the remaining

two items, the requirement 6 (dynamic model structure) and 7 (spatial modeling and

simulation).
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Chapter 3

Multi-algorithm simulation

framework – the meta-algorithm

In this chapter, we define a computational framework that can be used as a platform

of integrating various cellular submodels. First, we review some design options to

be considered for that framework, and find a prior art in discrete event simulation.

We will then define the framework named the meta-algorithm using a discrete event

scheduler and Hermite polynomial interpolation. Some uses of this ’meta-algorithm’

for biological and artificial models will be shown with an assessment of accuracy and

analysis of performance gain. The meta-algorithm framework has first published in

Takahashi et al., (2004).
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3.1 Introduction

3.1.1 Background

Computational cell biology is a rapidly growing simulation-oriented research field that

has been greatly stimulated by the array of high throughput methods developed in

recent years. In a previous chapter, we have argued that cell simulation poses many

significant computational challenges that are distinct from those encountered in prob-

lems of other disciplines such as molecular dynamics, or computational physics, and

even conventional biochemical simulations (See also Takahashi et al., (2002)). A vast

array of molecular processes occur simultaneously in the cell. The involved physical and

chemical processes include molecular diffusion, molecular binding, enzymatic catalysis

and higher order phenomena such as cytoplasmic streaming, complex macromolecular

interactions (such as the dynamics of RNA polymerase on the DNA molecule), and

global structural changes caused by cell division and cell differentiation.

Many different kinds of simulation algorithms have been proposed and are currently

being used for simulation of cellular processes. Different algorithms have different

strengths, and are often suited to different spatial and temporal scales. What we need

here to reconstruct the whole cell on computers is a computational framework that can

integrate those various simulation algorithms.

3.1.2 Classification of simulation algorithms

Time-driven simulation algorithms can be classified into three categories: differential

equation solvers, discrete time systems, and discrete event systems (Figure 3.1). Those

formalisms can be combined by or embedded in a “discrete event world view” (Zeigler

et al.,, 2000). Although this work is not a direct derivation of this rigid discrete event
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Figure 3.1: Multi-formalism simulation: a view from Zeigler’s DEVS

theory of modeling and simulation, some fundamental concepts such as the classification

of simulation algorithms and the use of an event scheduler have been borrowed from

that framework.

3.1.3 Multi-algorithm framework: design options

Vangheluwe (2000) proposed three different modeling approaches to couple sub-models

expressed in different formalisms.

• Meta-formalism approach.

The different formalisms of the sub-models can be subsumed and described in a

single meta-formalism. An example of this meta-formalism is Zeigler’s DEVS&DESS
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(Zeigler et al.,, 2000), which integrates discrete DEVS and continuous differen-

tial equation systems. (Note that, although the names are somewhat similar, the

’meta-algorithm approach’ described in the following sections is not classified into

this category.)

• Formalism Transformation approach.

Vangheluwe proposed a Formalism Transformation Graph (FTG), in which each

formalism is shown as a verticle, and possibilities of formalism transformations

are denoted as directed edges.

If each of the submodels is transformed to one common formalism, the resulting

model is a single-formalism model, and it can easily be manipulated and simu-

lated.

• Co-simulation approach.

In this approach, each of the sub-models is simulated with a simulator specific to

its formalism, and interaction due to coupling is resolved at the level of trajectory.

This approach forms a basis of the DoD High Level Architecture (HLA) (Zeigler

et al.,, 1997), which is a framework for simulator interoperability.

Vangeluwe argued that the Transformation approach makes most fruitful results for

modeling of complex systems, because, (1) meaningful meta-formalisms which truly

add expressiveness as well as reduce complexity are rare, and (2) compared to trans-

formation to a common formalism before simulation, though its object-orientation is

appealing from a software engineering viewpoint, co-simulation approach discards a lot

of useful information about the model structure (questions can only be answered at the

trajectory level).

However, when design of simulation software is under consideration, as Vangeluwe

pointed out, the object-orientation, thus modularity, of the co-simulation approach
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becomes rather promising. Especially, under the light of the requirement 4 (Object-

oriented simulation), one must be careful about adopting the meta-formalism and trans-

formation approaches, because as we have seen in the previous chapter, these ways

of multi-formalism simulation can harm the preservation of model semantics between

modeling and simulation phases.

Zeigler also gives two ways of multi-formalism modeling in his book (Zeigler et al.,

(2000), chapter 9):

• Formalism combining.

This approach aims to bind strengths of existing simulation algorithms to produce

a unified simulation algorithm of wide utility.

This roughly corresponds to the ’meta-formalism’ approach above, thus an ex-

ample of this approach is also Zeigler’s DEVS&DESS.

• Formalism embedding.

In this approach, existing algorithms are implemented as pluggable modules

wrapped to meet a common interface specification of a generic framework (e.g.

DEVS).

This corresponds to the ’co-simulation’ approach above.

In this paper we adopt this Zeigler’s terminology (combining / embedding) because the

aim of our discussion is mainly about simulation, and we do not have a strong need

of considering Vangeluwe’s formalism transformation approach, which relies mainly on

pre-simulation procedures.

Now the way we should go is becoming obvious. In this chapter, we explore the latter

embedding approach, and develops an algorithmic framework for integrating hetero-

geneous units of a composite model. We call this framework the ’meta-algorithm’,
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and it specifies the common interface of implementing (or wrapping) time advance and

inter-module communication functions over existing simulation algorithms.

A virtue of this style of scheme integration is that there is orthogonality between

subsystems, that is to say a degree of modularity can be assumed for each subsystem

simulated using a particular algorithm. If this requirement is satisfied, one can expect

established and well-studied algorithms, and the numerous existing models that exploit

them, to be useful when combined in a “plug-in” fashion to let them take part in

composite simulations that utilize the multiple algorithms.

3.2 Algorithm

As noted above, the novel approach we propose depends on the design of a meta-

algorithm, which we describe here in three parts: (1) data structure, which outlines

the organization of information required for model definition and execution, (2) driver

algorithm, which describes how interactions between sub-modules are handled, and

(3) integration algorithm, which explains the procedure by which state variables are

updated.

3.2.1 Data structure

In the followings, a vector is denoted with a small bold letter (e.g. x). Capital letters

(e.g. X) are used for sets. Class names are capitalized (e.g. Stepper). Small and

capital letters are used for scalars and objects.

Model is a class:

M = 〈x, S〉 (3.1)
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where

x = {x0, x1, . . . , xn} (3.2)

(typically ∈ Rn) is a vector of state variables, and S is a set of Steppers.

A Stepper is a class which represents a computational sub-unit of the model. The

Stepper class is defined as:

Si = 〈Pi, τi,∆τi,Λi, Ii〉 (3.3)

where Pi = {Pi,0, Pi,1, . . . Pi,m} is a set of Processes, τi is the current local time, ∆τi is

the current time step interval, Λi is the step method, and Ii is the interruption method,

of the ith Stepper. Ranges of τ and ∆τ are the same: (R+,0 ∪∞).

Definition of the Process class is given as follows:

Pi,j = 〈Fi,j , Ri,j〉 (3.4)

where Fi,j is a transition function, and Ri,j is a set of variable references such that

{xρ}ρ∈R ⊆ x, of the jth Process instance which belongs to Stepper Si. Ri,j consists, in

turn, of two subsets.

Ři,j ⊆ Ri,j (3.5)

is the accessor variable reference subset, and

R̂i,j ⊆ Ri,j (3.6)

is the subset of mutator variable references, such that Ř ∪ R̂ = R. For brevity we

denote Ri to mean
⋃

j Ri,j in the following sections.

F has a general form of:

F : (Ř∗,∆τ, τ) 7→ (R̂∗, δR̂) (3.7)
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where δR̂ is a set of contributions to derivatives of the mutator variables of F . (∗) means

that each reference element is de-referenced to get variable instances; thus R∗ ⊆ x.

We refer to a specialized form of F ,

F : (Ř∗,∆τ, τ) 7→ (δR̂) (3.8)

as a continuous transition function and

F : (Ř∗,∆τ, τ) 7→ (R̂∗) (3.9)

as a discrete transition function. For instance, differential equations generally have an

even simpler form of the continuous transition function,

F : (Ř∗, τ) 7→ (δR̂) (3.10)

Difference equations can be viewed as a type of discrete transition function. Discrete

event processes, which are constrained to discrete-valued changes in state variables at

scheduled time points, are formulated as:

F : (Ř∗, τ) 7→ (R̂∗) (3.11)

There is another possible form of discrete transition function:

F : (Ř∗) 7→ (R̂∗) (3.12)

Although we call this a ’transition’ function, this does not explicitly depend on time,

and no actual ’transition’ is expressed. However, in time-driven simulations, this type

of function is sometimes used in conjunction with other time-dependent functions to
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represent, for example, constraints of system states in a form of algebraic equations,

and non-spontaneous discrete transitions triggered by other transition functions.

We call a Stepper made up of Processes with continuous transition functions a continu-

ous Stepper, and a discrete Stepper if it has Processes with discrete transition functions.

In addition to the Model data structure presented above, the meta-algorithm requires

some additional data structures to execute a simulation.

The current global time, T , during a simulation is defined as:

T ≡ min
i

(τi + ∆τi) (3.13)

An updated-time vector t = {t0, t1, . . . , tn} ∈ (R+,0 ∪ ∞)n is used to store the last

updated times of all the variables.

A binary relation, which we call the Stepper Dependency, D, is defined on an ordered

pair of Steppers Sa and Sb as:

D = {(Sa, Sb)|(Sa, Sb) ∈ S × S ∧ Sa 6= Sb ∧ Řa ∩ R̂b 6= ∅} (3.14)

The interpretation is very simple; if a Stepper Sb can change a value of at least one

variable that the other Stepper Sa can read, Sa is said to be dependent on Sb, that is,

(Sa, Sb) ∈ D (or equivalently, SaDSb). This relation is not transitive (i.e. SaDSb ∧
SbDSc does not imply SaDSc), and not symmetric (i.e. SaDSb does not imply SbDSa).
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3.2.2 Driver algorithm

Time is advanced during the simulation in an iterative fashion. Each iteration of the

simulation consists of the following nine procedures.

1. Initialize t and all the τs to zero.

2. Compute the Stepper Dependency D defined by Equation 3.14 for all combina-

tions of Steppers.

3. From S, pick a Stepper Si which has the minimum scheduled time τi + ∆τi over

the set.

4. Update the local time of Si: τi ← τi + ∆τi.

5. integrate phase: Update values of variables R∗
i according to the integration algo-

rithm given below.

6. step phase: Allow the Stepper Si to execute a “step” by calling its implemented

“step method” Λi. Λi may call transition functions Fi,j of Processes Pi,j in the set

Pi according to its implemented algorithm. Λi may also update the step size ∆τi,

the timescale parameter θi, and any other implementation-specific parameters of

the Stepper Si.

7. dispatchInterruptions phase: In this procedure the Stepper Si notifies the change

of the variables to other Steppers. Si calls interruption methods Ij of all Steppers

Sj that depend on Si, i.e., {Sj |Sj ∈ S ∧ (Sj , Si) ∈ D}. The interruption method

Ij may change ∆τj , θj , and any other implementation-specific parameters of the

Stepper Sj .

8. log phase: For post-simulation data processing, record values of variables related

to this Stepper, R∗
i , if necessary.
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9. End if the termination condition given by the user (such as the value of T and

the number of iterations) is met. Otherwise go to 3.

The time is advanced and the values of the state variables are updated in three actions

(procedures 4, 5, and 6). Procedure 4 updates the local time τi of the Stepper Si and the

global time T . In procedure 5, the variables are updated by continuous Steppers (See

Integration Algorithm section). In procedure 6, Λi of a discrete Stepper may call its

transition functions to change the values of variables R∗
i . A continuous Stepper usually

does not change the values of variables in this procedure, but uses Λi to recalculate input

parameters to its interpolants from δR̂i (See Integration Algorithm and Implementation

sections). ∆τ is also recalculated in this procedure, and is used in procedure 4 of the

next step of the Stepper to advance the local time. In procedures 6 and 7, Steppers

set θi. θi ( ∈ R+,0 ∪ ∞ ) is an ancillary parameter which indicates the time scale of

change of R̂∗
i and δR̂i. Normally θi > 0 for continuous Steppers. If Si is a discrete

Stepper, usually θi = 0. In procedure 7, Steppers which depend on Si may use this

value as a clue to optimize computation by ignoring some of the interruptions from this

Stepper. See the Implementation section for example usage and calculation of θ. If

more than one Stepper has the same scheduled time in procedure 3, the one with the

highest ’priority’ value (defined as part of the model) is chosen.

3.2.3 Integration algorithm

In the integrate phase of the meta-algorithm (procedure 5 above), interpolation is used

to recompute the set of variables R∗
i .

In the simplest case, where all the continuous Steppers in the model implement first-

order numerical integration algorithms, the procedure has a form of Euler’s method
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with a second order error term. For each j ∈ Ri,

xj(τi) = xj(tj) + ∆tj
∑

k∈S̃

x′j,k + O(∆tj
2), ∆tj = τi − tj (3.15)

x′j,k =
∑

l∈Pk

δρk,l, ρk,l ∈ Rk,l (3.16)

where S̃ ⊆ S is the set of continuous Steppers, and tj is the last updated time of xj .

Here δρk,l is a contribution to the velocity of change of xj given by the lth Process of

the kth Stepper, and tj is the last updated time of xj .

Although mathematically concise, this scheme spoils the benefits of higher order algo-

rithms. No matter how high the order of the internal computational procedure being

used, the outcome will be integrated as a linear sum of the most recently computed

first order derivatives, resulting in a first order global precision. First-order algorithms,

however, only occasionally satisfy practical requirements, in terms of accuracy, effi-

ciency and stability, for numerical simulations of continuous systems. Therefore this

procedure should be extended to have a higher order error term.

Replacing the first order derivative term of Equation 3.15 by a difference of higher order

interpolants we get:

xj(τi) = xj(tj) +
∑

k∈S̃

Φk,j(τi,∆tj) + O(∆tj
s) (3.17)

where Φk,j(τi,∆tj) is an interpolant difference given by the kth Stepper for xj . The

order of the global error term is s = mink∈S̃ dk. Here dk is the order of the kth Stepper.

The interpolant difference Φk,j(τi,∆tj) is defined as a difference between values of the
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interpolant ιk,j at time points τi and τi −∆tj .

Φk,j(τi,∆tj) = ιk,j(τi)− ιk,j(τi −∆tj) (3.18)

The relationship between τi and tj is depicted in Figure 3.2.

Figure 3.2: Relation between τ and t
This example has only two continuous Steppers, S1 and S2. Both share a variable xj .

Time points τ1 and τ2 are where the last steps of these Steppers occurred, and τ ′1
(= τ1 + ∆τ1 = T ) is the current time. S1 steps at τ1 and τ ′1. S2 steps at τ2. xj is

updated at τ1, τ ′1, and τ2. If the last Stepper stepped before τ ′1 is S2, then
τ2 = tj = τ ′1 −∆tj .

To minimize the total expected error over the whole model, the input parameters to each

interpolant should be recomputed upon receiving an interruption (procedure 7 above).

This functionality is not guaranteed by the meta-algorithm, and is a requirement in the

implementation of specific algorithm modules, some examples of which are described

below.
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3.3 Some algorithm modules

Three sub-classes of Stepper, DiscreteEventStepper, DiscreteTimeStepper and Differ-

entialStepper, are provided according to Zeigler’s classification of simulation algorithms

(Zeigler et al.,, 2000). Each concrete implementation of an algorithm is a subclass of

one of these base classes.

At least the step method Λ, the interruption method I, and a function to determine

the timescale parameter θ must be defined in each implementation of a Stepper.

3.3.1 Differential equation modules

As subclasses of the DifferentialStepper, two general-purpose ordinary differential equa-

tion (ODE) solvers have been implemented. Many variants of the Runge-Kutta algo-

rithm exist, and the general form of the algorithm is given as follows:

kj = f

(
xn + cjh, yn + h

s∑

i=1

aj,iki

)
, j = 1 . . . s

yn+1 = yn + h

s∑

j=1

bjkj (3.19)

where h is the step size, s is the number of right hand side (RHS) evaluations required

for a single step. Specification of the matrix of coefficients a, b, and c determine each

specific variation of the algorithm.

Two instances of embedded explicit Runge-Kutta algorithms with dense output capabil-

ities have been implemented: second-order Fehlberg with a third-order error estimation

(Fehlberg 2(3)) (Fehlberg, 1969), and fourth-order Dormand-Prince with a fifth-order

error term (Dormand-Prince 5(4)7M) (Dormand and Prince, 1980).
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For some integration algorithms including these two, it is possible to derive interpolants

by using Hermite polynomial interpolation, the general form of which is:

g(x) =
∑

i

∑

j

αi,j(x)f (j)
i

[
dj

dxj
αi,j(x)

]

x=xk

= δi,k

where xk(k = 1, 2, · · · , n) is the time point where input is given, f
(j)
i is the input

function defined at xi as the jth order derivative, and δi,k is the Kronecker delta. If

f
(j)
i defines data points at m different combinations of i and j, then it can make an

interpolant of order m− 1.

A C0 interpolant of the second-order Fehlberg algorithm can easily be derived because

we have three data points, the initial value, (xj(τk)), the value at τi + ∆τi, (xj(τk) +
∑3

i=1 biki), and the first-order derivative value at the initial point, (k1).

ιk,j(t) = (1− σ2) xj(τk) + (−σ2 + σ)∆τkk1

+ σ2

(
xj(τk) + ∆τk

3∑

i=1

biki

)
+ O(∆tj

3) (3.20)

σ = (t− τk)/h, 0 < σ ≤ 1 (3.21)

where τk and ∆τk are the current time and the current step size of this Stepper,

respectively. Here α0,0 = (1 − σ2), α0,1 = (−σ2 + σ), and α1,1 = σ2. ∆τk appears in

the second and the third terms of the RHS because of the change of variable from t to

σ. Table 3.3.1 is the Butcher array of the method with the dense output coefficients σ

and σ2.

Shampine (1986) gives a C1 interpolant of the Dormand-Prince 5(4)7M with additional
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Table 3.1: Dense output coefficients and the Butcher array of Runge-Kutta Fehlberg
2(3)

0 aij

cj 1 1
1
2

1
4

1
4

bi
1
2

1
2 0

b∗i
1
6

1
6

2
3

σ 1 0 0

σ2 −1
2

1
2 0

coefficients b∗i :

ιk,j(t) = xj(τk) + σhk1 + 4σ2h(σ − 1)(k1 − v 1
2
)

+ 2σ2h(σ − 1
2
)(v1 − k1)

+ 2σ2h(σ − 1
2
)(σ − 1)(k7 − k1 + 4v 1

2
− 4v1)

+ O(∆tj
5),

v 1
2

=
7∑

i=1

b∗i ki, v1 =
7∑

i=1

biki (3.22)

The number of RHS evaluations required in each step of the simulation is three for

Fehlberg 2(3).

Interestingly, k
[n]
7 = k

[n+1]
1 for the Dormand-Prince 5(4)7M algorithm if there is no

interruption in a time interval (τn, τn+1]. Thus the number of RHS evaluations required

by the algorithm is seven for starting up, and six or seven during the simulation.

The step method Λ for these ODE modules are implemented with a standard adaptive

step sizing mechanism (Press et al.,, 2002). In addition, time step sizes are constrained

by the following condition to ensure that the Stepper does not change variable values
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too much at once in a single step:

∀j ∈ R̂i : xjεrel + εabs ≥
∑

l∈Pi

δρi,l ·∆τi (3.23)

where εabs and εrel (usually . 0.1) are absolute and relative constraint parameters of

changes of the variables in a step, and ρi,l is a variable reference of the lth Process in the

ith Stepper pointing to xj . The constraint parameters εabs and εrel should be provided

according to external conditions given to this Stepper, such as the total number of

continuous Steppers and their implemented algorithms.

In this implementation θi has the same value as ∆τi.

The interruption method Ii for the ith ODE solver is defined as follows:

1. If the timescale of the interrupter is smaller than the step size of this Stepper,

θk < ∆τi, then use θk as the initial guess of the next step size. Otherwise, just

return ignoring this interruption.

2. If the next step of the interrupter is before this Stepper, (τi + ∆τi > τk + ∆τk),

set ∆τi to T − τi.

Procedure 2 makes sure that the interrupted Stepper Si steps at least once between the

current and the next steps of the interrupting Stepper Sk. This guarantees that the

constraint in Equation 3.23 takes effect on the interrupted Steppers. Procedure 1 is an

optimization. If the interrupted steps more frequently than the interrupter’s timescale

parameter θk, the constraint is assumed to be satisfied without the interruption. By

using θk as the next step size of the interrupted Stepper, this optimization more likely

happens again in the next step.
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3.3.2 Gillespie-Gibson module

A standard Gillespie-Gibson algorithm, or the Next Reaction Method, has been im-

plemented as a subclass of the DiscreteEventStepper in a fully object-oriented fashion.

The probability density function for the next reaction to occur at time τ , P (τ), and

the probability that this reaction is of type µ, Pr(µ), are given by the following two

equations.

P (τ) =


∑

j

aj


 exp


−τ

∑

j

aj


 (3.24)

Pr(µ) = aµ/
∑

j

aj (3.25)

where aj is the propensity function of the jth reaction. In this implementation, we only

consider uni- and bi-molecular reactions, and if Xi is not an integer, a floor is taken to

calculate the propensity.

The interruption method I has been implemented to enable synchronization with other

modules. The procedure is:

1. Recalculate the propensities of the reactions.

2. Redetermine the time of the next reaction τi + ∆τi and the next reaction µ

according to the main algorithm.

3. Reschedule the Stepper to time τi + ∆τi on the scheduler.

The timescale θi is determined as:

θi = ξ ·∆τi min
ρ∈Ri,µ

ρ∗

|νρ| (3.26)

where ξ is a tolerance parameter, i is an index of the Stepper, and νρ is the stoichiomet-
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ric coefficient for the variable reference ρ defined as a part of the model. ξ takes a small

number such as 0.1, or 0. ξ 6= 0 directs it to pretend to be a continuous component.

This may make the simulation more efficient if this Stepper takes smaller step sizes

than other parts of the model. For instance, ξ = 0.1 lets θ be the expected time for the

reactant of the current Process with the smallest population to change its value by 10

%. If precision precedes efficiency, set ξ = 0.

The Mersenne-Twister algorithm (Matsumoto and Nishimura, 1998) has been employed

as a pseudo-random number generator.

3.4 Results

Two relatively simple models have been constructed to examine the performance of the

meta-algorithm. The first is a model of the heat-shock response, and has three vari-

ations, deterministic (ODE), stochastic (Gillespie), and composite (ODE/Gillespie).

This example is to show multi-algorithm and multi-timescale capabilities of the algo-

rithm. The second example is a simple cascade of coupled harmonic oscillators with

gradually changing timescales that span six orders of magnitude.

All the timings and results given in this work have been taken on a PC running RedHat

Linux 9 operating system with a dual Hyper-Threading-enabled Intel Xeon 2.8GHz

CPU and 1GB of RAM. This implementation is a single-thread application.

3.4.1 A multi-algorithm heat-shock model

When cells are exposed to high temperature, the synthesis of a small number of proteins

known as heat-shock proteins becomes selective and rapid (Gross, 1996). This process

is called the heat-shock response. σ32, a variation of the σ subunit of RNA polymerase,
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has been implicated as the global regulator for this system (Grossman et al.,, 1987).

DnaJ is a molecular chaperon that plays an important role in regulating the activity and

stability of σ32 (Gamer et al.,, 1996). Many molecular species involved in this process

are present in small numbers, most of which relate to gene expression processes, and

require stochastic simulation. In contrast, protein folding involves large quantities of

molecules, making stochastic simulation computationally challenging.

To evaluate the performance of a composite simulation scheme, we set up a pure stochas-

tic model, a pure ODE model and a stochastic/ODE composite model, based on Sri-

vastava’s stochastic petri net model of the E. coli heat-shock (Srivastava et al.,, 2001).

Protein folding/unfolding processes have been added to the model, and modeled as

differential equations in the ODE and composite models, and using the Gillespie al-

gorithm in the stochastic model (Figure 3.3). The list of reactions and initial values

of this model are shown in Table 3.2 and 3.3, respectively. The difference between

Srivastava’s original model and the model used in this work is also described in the

legend for Figure 3.3. All parameter settings in the three variations of the model are

identical.

We ran each model ten times for 100 seconds and traced the quantities of σ32 and

DnaJ to benchmark the performance. These two species were selected because σ32 is

biologically important, as it controls the expression level of heat shock proteins, and

DnaJ is on the boundary of the different algorithms in the composite model. The

composite model ran about 2.6 times as fast as the ODE model, and 351 times faster

than the stochastic model (Table 3.4). The difference in mean steady-state levels in

these three variations were within 2.7% for σ32, and 0.0008% for DnaJ. The standard

deviation of σ32 in the composite run was indistinguishable from that of the stochastic

run. In contrast, the trajectory of DnaJ was devoid of stochastic fluctuations in the

composite model (Table 3.4, Figure 3.4). The total number of protein molecules in this
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Table 3.2: Reaction list of heat shock model

Reaction Parameter
DNA.σ32 → mRNA.σ32 1.4× 10−3s−1

mRNA.σ32 → σ32 + mRNA.σ32 0.07s−1

mRNA.σ32 → degradation 1.4× 10−6s−1

σ32 → RNAPσ32 0.7s−1

RNAPσ32 → σ32 0.13s−1

DNA.DnaJ + RNAPσ32 → DnaJ + DNA.DnaJ + σ32 4.41×6 M−1s−1

DnaJ → degradation 6.4× 10−10s−1

σ32 + DnaJ → σ32.DnaJ 3.27× 105M−1s−1

σ32.DnaJ → σ32 + DnaJ 4.4× 10−4s−1

DNA.FtsH + RNAPσ32 → FtsH + DNA.FtsH + σ32 4.41× 106M−1s−1

FtsH → degradation 7.4× 10−11s−1

σ32.DnaJ + FtsH → DnaJ + FtsH 1.28× 103M−1s−1

DNA.GroEL + RNAPσ32 → GroEL + DNA.GroEL + σ32 5.69× 106M−1s−1

GroEL→ degradation 1.8× 10−8s−1

∗Protein→ UnfoldedProtein 0.2s−1

∗DnaJ + UnfoldedProtein→ DnaJ.UnfoldedProtein 9.7256× 106M−1s−1

∗DnaJ.UnfoldedProtein→ Protein + DnaJ 0.2s−1

Except the parameters for σ32 transcription, translation, and the last three reactions,
all the parameters are from Srivastava’s model. The partitioning of this heat-shock
model for the composite run was based on the propensities of the reactions. When
reactants are in small numbers, the propensity of the reaction is smaller and the

fluctuation or noise is bigger, which make stochastic method essential. Reactions with
asterisks (∗), which consume protein molecules, have at least two order higher

numbers of reactant molecules than most of the other reactions. These reactions were
modeled using ODE method in the composite and pure deterministic models, and
Gillespie in the pure stochastic model. All the other reactions were modeled with
Gillespie method in the pure stochastic and the composite model, and ODE in the

pure deterministic model.
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Figure 3.3: The heat-shock demonstration model
Model scheme for the heat-shock model. S32 means σ32; E S32 means the RNAP
core enzyme with σ32; Protein means folded protein and UnProtein means unfolded
protein. Dashed lines in the upper-right corner represent reaction modeled using ODE
in the composite model, and Gillespie in the stochastic model. Rate constants for σ32

transcription and translation are 1.4 ×10−3 and 7 ×10−2, respectively, which are the
only different parameters from the Srivastava’s model. k unfold = k binding = 0.2,
and k refold = 9.73 ×106.

example model is of order 106 – 107.

3.4.2 A simple model of multi-timescale oscillators

A cascade of twenty harmonic oscillator components X0, X1, · · · , X19 have been con-

structed. Each component Xn is coupled with the next one Xn+1 with a positive

feed-forward. The rate constant of Xn is doubled for Xn+1 (Figure 3.5), resulting in a

total timescale difference in the model of about log10(220) ' 6.0 orders of magnitude.

Five sets of the cascade are included in a model.

Benchmarking was conducted on the model with one, two, four, ten, and twenty Step-
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Figure 3.4: Simulation results of the the heat-shock model
Comparisons of (a) σ32 and (b) DnaJ time courses of the first 20 seconds of the sim-
ulation for the stochastic model, the composite model, and the deterministic model.
The composite and the ODE trajectories of DnaJ overlap. It can be seen that means of
the ODE (fine curve), the stochastic (dashed curve), and the composite (thick curve)
models agree well both in σ32 and DnaJ cases. The standard deviations of σ32 in the
stochastic and composite models are equivalent. In contrast, the stochastic fluctuations
cannot be seen for the DnaJ trajectory of the composite run, making it equivalent to
the ODE model (see Table 3.4 for numerical values).

89



3.4. RESULTS

Table 3.3: List of initial values used in heat shock model
Variable Initial Values Unit
DNA.σ32 1 number

mRNA.σ32 17 number
σ32 15 number

RNAPσ32 76 number
DNA DnaJ 1 number
DNA FtsH 0 number

DNA GroEL 1 number
DnaJ 464 number
FtsH 200 number

GroEL 4314 number
DnaJ UnfoldedProtein 5e6 number

Protein 5e6 number
σ32.DnaJ 2959 number

Cell volume 1.5e-15 liter
UnfoldedProtein 2e5 number

pers (Table 3.4.2). As an example, in the two Steppers variant, the components were

divided into two groups, X0, · · · , X9 and X10, · · · , X19. Relative and absolute dif-

ferences between results from these variations were smaller than the error tolerance

parameter given to the Steppers (10−6). The simulation speed improved as the number

of Steppers was increased. The twenty Steppers variant achieved almost an order of

magnitude better performance than the original.

Table 3.4: Benchmark results of the heat-shock model

Timing (sec.) Speed σ32 Std. Dev. σ32 Level DnaJ Std. Dev. DnaJ Level
Stochastic 507.7±0.76 1 3.74±0.072 15.18±0.391 5.273±0.206 464.4±0.498
Composite 1.445±3.5e-4 351 3.64±0.112 14.83±0.348 3.156e-2±0.282e-2 464.4±0.007

Deterministic 3.703 137 0 15.01 0 464.4

The three variations, stochastic, composite, and deterministic, of the heat-shock
model were run for 100 seconds. Each timing is an average of five runs. ξ = 0. The
mean levels and the standard deviations of σ32 were calculated over the simulation
results, and trapezoid method was used for the mean calculation. Dormand-Prince
5(4)7M algorithm has been used for ODE parts in the composite and deterministic
runs. The results do not include times for program invocation and parsing of the

XML model file. See also Figure 3.4.
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Figure 3.5: The cascade oscillators demonstration model
The model has a basic unit of two variables coupled by the following equations: d[Xi+]

dt =
−k2i[Xi−] + k2i−1[X(i−1)−], d[Xi−]

dt = k2i[Xi+] where k is a time scaling factor. A
cascade has twenty instances of the unit. The model has five sets of the cascade. Four
sample solutions of the cascade oscillators model are shown below the first (slowest),
second, ninth, and twentieth (fastest) components.

3.5 Discussion

3.5.1 ODE / Gillespie composition

In the limit of large numbers of reactant molecules, stochastic and deterministic simu-

lations are equivalent (Gillespie, 1977). In contrast, if the system has low copy numbers

of species, the deterministic law of mass action breaks down because the steady-state

fluctuations in the number of molecules (which is proportional to the square root of the

number of molecules) becomes a significant factor in the behavior of the system (Singer,

1953). ODE models isolate the biochemical system into a group of deterministic and

continuous reactions, and tacitly ignore fluctuations in the pathway (Rao et al.,, 2002).

With identical parameter settings, the stochastic and deterministic models can pro-

duce different results, and stochastic models are generally believed to be more accurate

(Marion et al.,, 1998; Srivastava et al.,, 2002).
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Table 3.5: Benchmark results of the cascade oscillators model
|S| Predicted Cost Timing Predicted Speed Speed
1 219·20 [100%] 68m43s 1.00 1.00
2 29·10 + 219·10 [∼ 50%] 35m13s 2.00 1.95
4 5(24 + 29 + 214 + 219) [∼ 26%] 18m16s 3.88 3.76
10 4·410−1

4−1 [∼ 13%] 9m33s 7.50 7.20
20 220−1

2−1 [∼ 10%] 7m10s 10.00 9.5

The cascade oscillators model was run for 0.5 seconds. The components were equally
divided into one, two, four, ten, and twenty Steppers. An average of three runs is
shown for each configuration. Dormand-Prince 5(4)7M algorithm has been used for all
the components. The timings include a program startup and an XML parsing. The
predicted simulation costs are calculated by assuming that it is directly proportional
to values of time constants.

Despite its advantages, however, Gillespie’s scheme of exact stochastic simulation has

limited utility due to its computational cost which is proportional to the number of

molecules. The composite simulation of the heat-shock demonstration model shows

that, if carefully chosen, ODEs can replace some parts of the stochastic model, resulting

in a dramatic improvement in performance without jeopardizing the benefits of the

original purely stochastic model. A logical extension to this “static” combination of

the deterministic and stochastic schemes would be “dynamic” switching between these

different simulation methods. This will be further explored in future work.

3.5.2 Related works in stochastic/deterministic hybrid simulation

We know of at least three related works in hybridizing deterministic and stochastic

biochemical simulation schemes. Zak et al., (2003) (see supplementary information)

introduces a hybrid method coupling the implicit Euler method and Gillespie’s Direct

method. However, the design of this method relies on some assumptions specific to

their gene regulation model, such as unidirectional coupling from the deterministic to

the stochastic sub-model. Kiehl et al., (2004) also has a type of hybrid algorithm com-
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bining the Gillespie’s Direct method and Runge-Kutta ODE solvers. This method has a

mechanism of interpolation of ODE-side trajectories that is similar to what we have em-

ployed in the implementation of the ODE algorithm modules. In addition, this method

generates time-varying random distribution to make full use of the information given

by the interpolated trajectory. This improvement will be considered in our framework

too. Vasudeva and Bhalla (2004) has a fixed-step size method in which reactions adap-

tively switch between stochastic and deterministic methods. This adaptive switching

is another possible improvement to our framework of ODE/Gillespie composition.

Unlike the novel framework that takes the embedded formalism approach, all works

introduced here basically aim at coupling of Gillespie-type stochastic methods and

ODE solvers, and thus are taking the combined approach with which modularity is

limited.

Although this is not a combination of stochastic and deterministic methods, Haseltine

and Rawlings (2002) proposed a stochastic partitioning of chemically reacting systems

into slow and fast subsets, and applying an exact and an approximate (Langevin)

variations of the Gillespie algorithms for fast and slow parts, respectively.

3.5.3 Performance analysis of the heat-shock model

The composite heat-shock model runs faster than both the ODE and the Gillespie

models. The following crude approximation of computational costs of these models

93



3.5. DISCUSSION

withstand some discussion.

OGillespie ∝
[∑

a
]
log N

OODE ∝ γ

[
∂f

∂x

]
N

OComposite ∝
[∑

a
]
m

log Nm+ γ

[
∂f

∂x

]

f

Nf

where [∂f
∂x ] is a measure of the degree of stiffness, N is the number of reactions, [

∑
a]

denote the total propensity, and γ is a constant parameter to relate [∂f
∂x ] and [

∑
a].

Subscripts m and f indicate the main part and the folding part of the model, respec-

tively. Obviously N = Nm + Nf . Computational cost of explicit ODE solvers such

as Dormand-Prince 5(4)7M is largely determined by the degree of stiffness, which is

dominated by ∂f
∂x (where x is a dependent variable, and f is the derivative function for

x). The large (242-fold) performance difference between the ODE and Gillespie implies

the following:

γ

[
∂f

∂x

]
N ¿

[∑
a
]
log N (3.27)

In fact, ∆τ of the ODE Stepper was about 10−3, while the step size of the Gillespie-

Gibson Stepper was typically in the range of 10−6 – 10−9. The composite model is

faster than the ODE model, that is,

[∑
a
]
m

log Nm +
[
∂f

∂x

]

f

Nf <

[
∂f

∂x

]
N (3.28)

if [
∂f

∂x

]

f

Nf <

[
∂f

∂x

]
N (3.29)

and
[∑

a
]
m

log Nm ¿ γ

[
∂f

∂x

]
N (3.30)
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Because the degree of stiffness is dominated by the fastest component of the system, it

can be assumed that [
∂f

∂x

]

f

'
[
∂f

∂x

]
(3.31)

Thus the first proposition (3.29) can obviously be verified by

Nf < N (3.32)

The latter proposition (3.30) is consistent with the ∆τ observed in Gillespie simulation

of the main model in isolation (10−1 – 10−3). This speed difference, however, is less

important than that of the Gillespie and the composite models because the dependency

of the ODE solvers to stiffness can partially be overcome by use of an implicit or solver

(Gear, 1971). Now the difference between the composite model and Gillespie model,

which is denoted as:

[∑
a
]
m

log Nm + γ

[
∂f

∂x

]

f

Nf ¿
[∑

a
]
log N (3.33)

is explained because
[∑

a
]
m
¿

[∑
a
]

(3.34)

and

γ

[
∂f

∂x

]

f

Nf < γ

[
∂f

∂x

]
N ¿

[∑
a
]
log N (3.35)

3.5.4 Accuracy of the composite heat-shock simulation

In the composite model, σ32 behaves identically with the pure stochastic model, and

the trajectory of DnaJ almost matches that of the deterministic model. σ32 is one step

away, and DnaJ is on, the boundary between the deterministic and the stochastic parts

of the model. In the composite simulation, stochastic fluctuation of DnaJ is absorbed by
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the fast rates of the deterministic reactions involved in controlling its steady-state value.

The primary path from the boundary (DnaJ) to σ32 is a slow reaction (dissociation of

σ32 / DnaJ complex, k = 4.4× 10−4) which filters higher frequency fluctuations. Thus

σ32 is insensitive to such rapid fluctuations even in the pure stochastic model, and no

difference is observed between the stochastic and composite runs in the first and second

moments of the time course. An analysis of higher moments showed a slight difference

in skewness, and no difference in kurtosis (Figure 3.5.4). However, as the behavior of

DnaJ exemplifies, the composite simulation must be used with caution if the stochastic

effect on species near the boundary is of interest, or is expected to influence the overall

behavior of the model.

3.5.5 Legitimacy of the recalculation upon interruption of the Gillespie-

Gibson Stepper

The Gillespie-Gibson Stepper recalculates putative times of all the reactions upon inter-

ruptions by other Steppers. The correctness of these recalculated times in a composite

simulation is guaranteed because the interruption procedure itself does not affect the

probability density P (τ). To verify this, consider an interruption at τ ′, (τ ′ < τ), the

probability density of the next reaction time, P̃ (τ), is then calculated by the following
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Figure 3.6: Normalized comparison of distribution of σ32 in heat shock model.
Distributions of σ32 values in the (a) stochastic and (b) composite simulations of the

heat-shock model. These histograms are drawn over ten runs of the 100 second
simulations. As shown in the Table 1 of the main paper, means and standard

deviations agree well. Unlike these lower moments, the shapes of the distributions
have a slight difference. This difference appears in skewness of the statistics:

0.1148±0.0384 in the stochastic run and 0.2079±0.0474 in the composite run. Again,
the fourth order moments (kurtosis) are equivalent: 2.9060±0.1005 in stochastic and

2.9191±0.0821 in composite.
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equation.

P̃ (τ) =

(
1−

∫ τ ′

0
P (t)dt

)
·P (τ − τ ′) (3.36)

= exp
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

This is equal to the original function in Equation 3.24.

3.5.6 Performance analysis of the coupled oscillator model

The coupled oscillator model demonstrates the efficiency with which multi-timescale

phenomenon can be modeled in our novel framework. In this toy model, slower com-

ponents were unidirectionally connected to faster components. This type of coupling is

commonly observed in the cell. For instance, expression of enzymes from genes, which

is relatively slow, controls metabolic reactions. Conversely, if there is a feedback from

the faster components to the slower ones, which is also common in the cell, frequent

synchronizations are required. In this case the performance of this implementation is

expected to be the same as, or worse than, conventional synchronous single-algorithm

simulators because of the interruption overhead. However, if the slow component is

assumed to be insensitive to perturbations on the faster component’s timescale, syn-

chronization costs could be reduced. This improvement will also be considered in future

work to improve the meta-algorithm.
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3.5.7 Strengths and weaknesses of the meta-algorithm

As discussed in the ’design options’ section, there are two design schemes of multi-

formalism simulation frameworks; combining and embedding, and our meta-algorithm

takes the latter embedding approach.

A major source of strengths of the meta-algorithm approach is that it enforces modu-

larity, or context-independent design, on implemented modules. Each simulation algo-

rithm module and thus submodel is required to have a well-defined interface of time-

scheduling and communications with other modules. Good outcomes of the modularity

of the meta-algorithm are:

• Once an algorithm is implemented in a modular way, it can be used in combination

with any other algorithm modules.

• Implementations of algorithm modules are often simpler and maintainable than

combined forms of the same set of algorithms.

On the other hand, one drawback in this modular design is that, because of the inherent

’interface barriers’ between sub-models, dynamic switching between algorithms imple-

mented in different modules is still a future work, and currently not available. This

is immediately an advantage of the combined approach. For example, Gillespie’s tau

leaping method can be viewed as a combination of an exact method and the approxi-

mate tau-leaping scheme, and it switches to the exact method when the approximation

becomes inappropriate. These methods connect smoothly to each other in a natural

way as the scales of concentration and propensity changes.

Let’s take a more close look at this problem. When integrating two different simulation

algorithms, there can be two cases. The first being a combination of two completely

different simulation algorithms that treat different formalisms. An example is a com-
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bination of a stochastic elementary reaction submodel, for which Gillespie algorithm is

often used, and an ODE sub-model of Michaelis-Menten-type enzymatic complex reac-

tions. In a biochemical sense, these two sub-models require different types of kinetic

parameters and modeling approaches, and these are not inter-convertible. Another ex-

ample is when we have a model of metabolism as a diffusion-reaction cellular automata,

and want to co-simulate this with a boolean-network model of gene expression. Call

this the multiple modeling formalism case.

The other instance is that when we have a set of physical processes (such as chemical re-

actions) of the same abstraction level. One common circumstance in computational cell

biology is that the model to be simulated consists exclusively of elementary reactions.

As we have seen, this is the case where Gillespie-family of algorithms are frequently

used. The system is homogeneous in terms of modeling formalism. We can apply both

single and multi-algorithm simulators for the same type of problems. Tau-leaping al-

gorithm, as discussed above, is a good example of this. Dynamic switching between

the exact methods and Langevin or ODE methods could sometimes be used too. The

biggest reason to adopt multi-algorithm simulator here is efficiency and accuracy, be-

cause except for these factors single- and multi-algorithm runs are essentially identical

to each other. We call this the single modeling formalism case.

From these observations, it can be concluded that while in general embedding is prefer-

able because of its modularity, combining can be advantageous when different algo-

rithms are combined to handle changing scales in single-formalism models.

In fact, in addition to embedding, the meta-algorithm framework supports combining by

allowing algorithms in combined forms to be implemented as algorithm modules. Also,

meta-algorithm’s embedding framework itself could be extended to support adaptive

switching between algorithm by providing a mechanism of ’Process migration’, which

allows Process objects to migrate among multiple Steppers of different algorithms dur-
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ing a simulation.

Consequently, there are four cases in multi-algorithm simulations.

1. Single modeling formalism / combined simulation algorithms.

This is the case of the elementary reactions / Gillespie-family methods.

2. Single modeling formalism / embedded simulation algorithms.

This is what we explored in the composite E. coli heat-shock model. Although

adaptive switching between simulation algorithms require a special mechanism

(e.g. Process migration), a good point is that the modularity in each algorithm

module is assured.

3. Multiple modeling formalisms / combined simulation algorithms.

Generally, this approach only occasionally results in a good simulator design, as it

requires a new simulation algorithm to be developed for each distinct combination

of modeling formalisms, unless there is an existing algorithm generic enough to

run these formalisms simultaneously.

Zeigler’s DEVS&DESS is an exceptionally useful example here, because it com-

bines two very general formalisms; discrete event and differential equation.

4. Multiple modeling formalisms / embedded simulation algorithms.

This is where the meta-algorithm framework shows its potency to the full. With-

out this kind of computational platforms, composition of sub-models that require

different simulation approaches is impossible in the first place.

Needless to say, when a model has more than two modeling formalisms or simulation

algorithms, things are more complicated. The meta-algorithm framework supports all

of those cases.
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3.5.8 Parallelization of the meta-algorithm

There can be two levels of parallel computation in the meta-algorithm framework. The

first possibility is parallelization of the step method Λi and the interruption method

Ii of each Stepper Si. This sub-Stepper level parallelization scheme would be effective

when the computation to be done by a Stepper at each simulation step is heavy and

readily parallelizable, for instance, calculations of molecular diffusion, using parallel

computation frameworks such as OpenMP. This level of parallelism can be achieved

by the implementation of each Stepper module, and basically does not require special

support by the meta-algorithm itself.

The other strategy of parallelization is at a Stepper level, as opposed to the sub-Stepper

parallelism. In procedure (3) of the driver algorithm, after picking up the next Stepper

Si, the scheduler can check the other Stepper Sk immediately after Si on the schedule

queue satisfied the following condition,

{(Si, Sk), (Sk, Si)} 6⊆ D ∧ {Sj |τi + ∆i ≤ τj + ∆j ≤ τk + ∆k} = ∅, (3.37)

and if it is true, procedures (4) to (8) of Steppers Si and Sk can be executed concur-

rently. If Si is replaced with the set of already running Steppers, Srunning, this parallel

scheduling framework can easily be extended for multiple Stepper cases where more

than two Steppers may run in parallel.

Sstartable = {Sk|Si ∈ Srunning ∧ {(Si, Sk), (Sk, Si)} 6⊆ D

∧{Sj |τi + ∆i ≤ τj + ∆j ≤ τk + ∆k} = ∅}. (3.38)

Steppers in the set Sstartable are started by the scheduler, and the set is joined with

Srunning. This procedure is repeated until Sstartable becomes empty. When all Step-
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pers in Srunning finish executions, the global time is updated, Srunning is flushed, and

proceeds to the procedure (9). Shared-memory multi-threading is suitable to this par-

allelization scheme, and an attempt of implementation is ongoing with Satya Arjunan

(Arjunan et al.,, 2003).

3.6 Conclusion

Due to the non-linear nature of the subsystems and the intimate couplings between

them, simulation is crucial for cell biology research. In the past, however, it has been

the norm to adopt different simulation algorithms for different sub-systems of the cell.

This had made it difficult to combine the sub-cellular models and in many cases limited

the applications of simulation to single-scale, sub-cellular problems.

In this chapter, we have provided a modular meta-algorithm with a discrete event sched-

uler that can incorporate any type of time-driven simulation algorithm. It was shown

that this meta-algorithm can efficiently drive simulation models with different simula-

tion algorithms with little intrusive modification to the algorithms themselves. Only

a few additional methods to handle communications between computational modules

are required.

The best algorithm for a specific model is determined by the nature of the target

system. Our meta-algorithm provides a solution for situations in which it is necessary

to simulate processes concurrently across multiple scales of time, space or concentration

(Rao et al.,, 2002).
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Chapter 4

E-Cell System

In the previous sections, an implication of the ’ontological complexity’ of the cell that

leads to need for a sophisticated software platform has been discussed. Unlike some of

conventional approaches to physical and biochemical systems, such complicated nature

of the cell as a target system is inevitably reflected by the design and implementation

of the software (Takahashi et al.,, 2002).

In this chapter, we discuss design and implementation of E-Cell System, a software

environment for modeling, simulation and analysis of the cell. We put an emphasis

on architecture and implementation of E-Cell Simulation Environment, a part of the

E-Cell System of which core is an object-oriented simulation engine that implements

the cell simulation ’meta-algorithm’ discussed in the previous chapter.

4.1 Architecture of E-Cell System

E-Cell System is a suite of software that provides an environment for modeling, simula-

tion and analysis of large-scale complex systems such as biological cells. The following
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Figure 4.1: Overview of E-Cell System Development

three parts constitutes E-Cell System Version 3 (Figure 4.1): (1) E-Cell Simulation

Environment (E-Cell SE), which runs the simulation, (2) E-Cell Modeling Environ-

ment (E-Cell ME), that helps users to conduct a collaborative modeling of large-scale

cell models, and (3) E-Cell Analysis Toolkit, a library of mathematical analysis scripts

for E-Cell SE. This paper mainly discusses E-Cell SE.

4.1.1 The E-Cell Simulation Environment

E-Cell Simulation Environment, the core of E-Cell System, provides the rest of the

system an ability of trajectory realization. E-Cell SE, in turn, is consisting of two

parts; (1) the kernel and (2) frontend components. The kernel part of E-Cell SE is the

libecs library written in ISO C++, and has a layered architecture (Figure 4.3). Libecs

class library defines object classes for fundamental functionalities of the system, such

as an implementation of the ’meta-algorithm’ and data-logging. Giving a facade to

the set of object classes is libemc library which is also written in C++. This library

defines a C++ API of the system for frontend scripting. Frontend components of
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E-Cell SE are written in Python language, and utilizes a Python binding of libemc,

pyecs module. Upon the pyecs layer, various peripheral software components such as

graphical and script-based frontends, simulation session managers, analysis modules,

data management modules, cell model editors/processors and other user-level scripts

are developed. Figure 4.2 shows a GUI simulation session monitor frontend built upon

pyecs API.

Figure 4.2: E-Cell Simulation Session Monitor GUI

Libecs, libemc and pyecs layers are written in C++ language, and frontend scripts

uses Python language. C++ has been chosen for components for which runtime effi-

ciency, coding strictness and flexibility are critical. Python is an ideal language for the

other user-side components, where productivity and readability are demanded. Python

language is a popular, interpreted, object-oriented, and very high-level programming

language which shows prominent productivity even with non-professional programmers.
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Figure 4.3: Three layer architecture of E-Cell kernel

Owing to its modular design, any type of user interface can be developed as user-level

Python scripts. Preferred styles of user interfaces vary according to many factors, such

as the stage of the simulation project, purpose of the simulation, the analysis method

currently in use, available computation resources, and the user’s preferences. Two main

types of user interfaces are GUI (Graphical User Interface) and CUI (Command-line

User Interface or Character-based User Interface). GUI is well suited for interactive

model editing, simulation running and analysis if many trial and error is needed. CUI

is suitable for automation of very long sessions and parametric computings. E-Cell SE

supports both styles of the operation modes.

E-Cell SE supports two levels of parallel computation. At a lower level, a simulation

session of a multi-stepper model can be parallelized on shared-memory multi processor

computers (Arjunan et al.,, 2003). Secondly, simulation experiments that involves many

runs of simulation sessions, such as parameter tuning, metabolic control and bifurcation

analysis, can also be parallelized on cluster and grid environments. This distributed

computing is supported by E-Cell SessionManager module, with which users can write
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Figure 4.4: The E-Cell Modeling Environment

scripts to create many simulation sessions, dispatch them to remote computers, retrieve

the simulation results and process the result data.

4.1.2 The E-Cell Modeling Environment

In whole and multiple cell scale simulation projects, writing models by hand is unlikely

to work. A database-driven software environment for integrating biological data and

creating simulation models is necessary. Although this is not part of the work that

this thesis is mainly discussing, here we briefly describe the overall design of E-Cell

Modeling Environment, or E-Cell ME, which is a software environment for large scale

cell biology modeling projects.

We envision a four phase modeling scheme, each being supported by a seamlessly in-

teroperating software suite (Figure 4.4).

• Data preparation phase
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In this phase, biological data needed to develop simulation models is stored in

public and private databases. The private database is used both for (1) collecting

supplementary data not available on the public databases but can be retrieved

from other sources such as literatures, and (2) collaboration between the modeling

project and wet laboratories who supply the data.

The environment has a software component called the ’database facade’ to provide

other portions of the system a unified means of retrieving data from multiple

databases.

• Data integration phase

Automatic model generator software (the ’model producer’) creates templates of

the models in XML-based E-Cell Model description Language (EML) from the

’model definition’ files written by users. A model definition file specifies informa-

tion necessary to automate the model generation, such as a targeted organism,

pathways, modeling conventions used, and simulation approaches (e.g. determin-

istic or stochastic) to be applied.

• Model editing phase

EML models are edited by users with a multi-view, database-integrated model

editor software. It also provides a plain-text modeling file format that can be

edited by text editors.

• Simulation phase

Constructed simulation models in EML are read and run on E-Cell SE. Simulation

results are fed back to the simulation model and the databases.

E-Cell ME is currently under development.
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4.2 Object-oriented implementation of the meta-algorithm

The multi-algorithm computation framework called the ’meta-algorithm’ introduced

in the previous chapter has been implemented in libecs core library of E-Cell System

Version 3.

4.2.1 Fundamental classes

The ’meta-algorithm’ has three basic object classes, Variable, Process, and Stepper. A

set of Variable objects represent a state of the model system. Values of Variable objects

are changed by Process objects, which encapsulate continuous and discrete transition

functions. Timings of firings of Process objects are determined by Stepper objects.

In addition to these three base classes, this implementation adds the System object

class for structured modeling of large-scale systems. Figure 4.5 shows relationships

between these fundamental classes. Variable, Process and System objects has a common

base class, Entity. Entity and Stepper classes are two fundamental base class, and

share a common root class called PropertiedClass. A System object contain Variables,

Processes, and also other Systems (or sub-Systems), and represent physical and/or

logical compartments.

Four basic base classes of Stepper are available: DifferentialStepper, DiscreteTimeStep-

per, DiscreteEventStepper, and PassiveStepper (Figure 4.6, 4.7). DifferentialStepper is

a continuous Stepper, and all the other Steppers are discrete. DifferentialStepper is

used to drive Processes that encodes differential equations. DiscreteEventStepper is

used for discrete-event simulation algorithms such as the Gillespie methods. Discrete-

TimeStepper is used for discrete-time simulation models, and does not change its step

size during simulation ignoring incoming interruptions. Although it is not included in

Zeigler’s classification of simulation algorithms, another base class of Stepper named
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Entity

System

VariableProcess

PropertiedClass

0..*

theSubsystemMap

theVariableMap

0..*0..*

theProcessMap

Stepper

0..*

theVariableMap

theProcessMap

0..* 0..*

theSubsystemMap

Figure 4.5: Fundamental class diagram
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Stepper

DifferentialStepper DiscreteTimeStepper DiscreteEventStepper PassiveStepper

Figure 4.6: Stepper base classes

PassiveStepper is implemented. It never steps spontaneously (i.e. ∆t = ∞), and fires

its Process objects upon interruptions from other Steppers. It is useful for time-less

computation procedures used in simulations, such as the calculation of flux-distribution

coupled with a dynamic part.

4.2.2 Overall structure of the simulator core

A frontend module must instantiate a Model object when starting a simulation session.

A Model is composed of three major parts, the Scheduler, the root System and the

LoggerBroker member objects (Figure 4.8). The Scheduler has a set of all Steppers in

the simulation model, and when the simulation is started, calls Steppers to proceed

time. The root System is a plain System object that works as the root of all other

Entity objects, and is automatically created when the simulator is started up. The

LoggerBroker creates and maintains Logger objects. A Logger is created upon user’s

request, and stores a time-series of a property of an Entity object.

The Model object also owns class methods for basic operations to prepare and run

simulations. For example, its step() method conduct a step of simulation calling the

next Stepper in the Scheduler, and advance time. getCurrentTime() method returns
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Figure 4.7: Basic behaviors of Stepper base classes defined in E-Cell SE
dt: basic step sizing policy. (’var.’ means variable step size, ’const.’ means that the
Stepper does not change step size by itself. ’inf.’ indicates that the Stepper does not
step spontaneously.) Time scale: the procedures to determine the time scale of the

Stepper (θ in the algorithm chapter). Type: the type of the Stepper, either continuous
or discrete. Interruption: the policy used to dispatch interruptions to dependent

Steppers. (’always’ means that it always dispatchs interruptions to all the dependent
Steppers, and ’never’ is that it does not make interruptions at all.) Interrupted: the
policy used when the Stepper is interrupted. (’recalculate interpolants’ means that it

recalculates input parameters to its Interpolant objects. ’ignore’ simply ignores
incoming interruptions. ’reset’ means that the Stepper resets the state of the system.
’step’ indicates that it uses a procedure equivalent to usual simulation steps (i.e. calls

fire() of Processes).)

the current time. getEntity(), getStepper() and getSystem() methods finds and returns

a borrowed pointer to an Entity, a Stepper, or a System object getting an identifier.

createStepper() and createEntity() methods create new Stepper or Entity objects in

the simulation model.

4.2.3 Implementation of transition functions

The meta-algorithm defines the continuous transition function

F : (Ř∗,∆τ, τ) 7→ (δR̂) (4.1)
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Model

+initialize()

+step()

+getCurrentTime()

+createEntity(in aClassname:String, in aFullID:FullID)

+getEntity(in aFullID:FullID)

+getSystem(in aSystemPath:SystemPath)

+createStepper(in aClassname:String, in anID:String)

+getStepper(in anID:String)

+flushLogger()

+getNextEvent()()

+reschedule( aSteperPtr: StepperPtr )()
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System
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theLoggerMap

0..*

theSubsystemMap

0..*
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0..*

theStepperMap theSystemVector

1..*
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0..*
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Figure 4.8: Simulator overview class diagram
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Process

+isContinuous : bool = false

+initialize()

+fire()

VariableReference

+Name : String

+Coefficient : int = 0

+isAccessor : bool = true

+setValue(aValue:Real)

+getValue(aValue:Real)

+addVelocity(aVelocity:Real)

Variable

+Value : Real = 0

+Velocity : Real = 0

+LastTime : Real = 0
0..*

theVariableReferenceVector

theVariable

theVariableReferenceVector

0..*theVariable

Figure 4.9: Classes implementing transition functions

and the discrete transition function

F : (Ř∗,∆τ, τ) 7→ (R̂∗). (4.2)

In libecs, implementation of this framework of transition functions spreads over three

object classes, Process, Variable, and VariableReference.

Figure 4.9 depicts how these three classes of objects are related. A Process object,

Pi,j , has two main methods, Process::fire() and Process::initialize(). The Process::fire()

method corresponds to the transition function Fi,j of the Process Pi,j . The Pro-

cess::initialize() method is called to initialize the Process object when the simulator

is starting up or the structure of the model is changed. The Process object also has is-

Continuous boolean flag, which indicates if this Process’s transition function (the fire()

method) is continuous (true) or discrete (false). Variable references Ri,j of the Process

Pi,j are stored as a vector of VariableReference objects (theVariableReferenceVector in

the figure). Each VariableReference object has a name, a coefficient, an isAccessor flag,

and a pointer to the Variable that this reference points to. A VariableReference ρ is

a mutator (ρ ∈ R̂i,j) if the coefficient is not zero, and it is an accessor (ρ ∈ Ři,j) if

the isAccessor flag is true (which is the default). Transition functions (fire() methods)

of Process objects manipulate Variables using the VariableReference objects. When a

VariableReference is an accessor, the Process is allowed to use its getValue() method
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Figure 4.10: Relations between discrete/continuous Processes and a Variable.
As shown in this diagram, a discrete Process belongs to a discrete Stepper, and can
alter the value of the Variable directly. On the other hand, a continuous Process cannot
directly access the Variable, and uses an Interpolant object to give it a continuous
output. The continuous Stepper contains the continuous Process.

to get the Value property of the Variable. When the VariableReference is a mutator,

and the Process is discrete, it can change the value of the Variable directly by call-

ing setValue() method of the VariableReference. If the Process is continuous, it may

call addVelocity() method of the VariableReference to add some value to the Velocity

property of the Variable (which corresponds to δρ of the meta-algorithm framework).

This Velocity is used by the Process’s continuous Stepper to compute input param-

eters to its interpolants. Figure 4.10 is a schematic summary of relations between

discrete/continuous Processes and a Variable.

4.2.4 Implementation of the integration algorithm

Object classes related to the implementation of the integration algorithm is shown in

Figure 4.11. Each continuous Stepper class has its own Interpolant class, and registers
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an instance of the Interpolant to each of Variables in its mutator variable reference list

(R̂∗
i ) at model initialization.

In procedure 5 (integrate phase) of the driver algorithm, the Stepper Si calls integrate()

method of all the Variables R∗
i with the current local time τi (i.e. integrate( τi )

). In integrate() method, the Variable object corresponds to the variable xj calls

getDifference() method of each Interpolant object in its InterpolantVector with the

current local time τi and the time interval ∆tj to calculate the interpolant difference

Φk,j according to 3.18, where k is the index of the Stepper of the interpolant. ∆tj

is calculated by the Variable object as τi − tj . tj is stored in the LastTimeLastTime

property of the Variable object. The Variable then calculates the interpolant sum

3.17 by simply summing up the calculated interpolant differences. Lastly, the Variable

updates the last updated time tj , and the integration procedure finishes.

4.2.5 Simulation procedure

Figure 4.12 displays all the main object classes involved in simulation.

The procedure to conduct a step of simulation is as shown in Figure 4.13. The Model

object calls step() method of the Scheduler. The Scheduler picks the next Stepper from

its schedule priority queue, theScheduleQueue (procedure (3) of the Driver algorithm).

The Scheduler then update the global time and the local time of the Stepper by calling

setCurrentTime() method (procedure (4)). Next, the Scheduler calls the Stepper in

four phases: integrate, step, dispatchInterruptions, and log. In the integrate phase, the

Stepper calls integrate() method of all Variables related to the Stepper. As explained

in the ’implementation of the integration algorithm’ section above, each Variable uses

its Interpolants’ getDifference() method to update its value at the current time, and

each Interpolant object uses interpolation parameters given by Steppers connected to
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Process

Interpolant

+getDifference(aTime:Real, anInterval:Real)

Stepper

Variable

+Value : Real = 0

+Velocity : Real = 0

+LastTime : Real = 0

+integrate(aTime:Real)

FooContinuousStepper::Interpolant

-theVariableIndex : size_t

+getDifference(aTime:Real, anInterval:Real)

FooContinuousStepper

+createVariableProxy(aVariable:VariablePtr)

0..*

theProcessVector

theVariableProxyVector

0..*

theVariableVector (read / write)

1..*

0..*

VariableReference
theVariableReferenceVector

0..*0..*

theVariableReferenceVector

0..*

theProcessVector

1..*

0..* theVariableVector (read / write)

theVariableProxyVector

0..*

Figure 4.11: Integration mechanism class diagram
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Entity
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+Velocity : Real = 0

+LastTime : Real = 0

+integrate(aTime:Real)

Interpolant

+getDifference(aTime:Real, anInterval:Real)

VariableReference

+Name : String

+Coefficient : int = 0

+isAccessor : bool = true

+setValue(aValue:Real)
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theProcessMap

0..*

0..*

theSubsystemMap

theVariableMap0..*

theInterpolantVector

0..*

0..*

theVariableReferenceVector

theProcessVector

0..*

theVariableVector (read / write)

0..*

1..*

1..*

theSystemVector

theSuperSystem

theInterpolantVector

0..*

theVariableReferenceVector

0..*

theVariableVector (read / write)

0..*

1..*

0..* theVariableMap
0..*

theProcessMap

0..*

theSubsystemMap

theProcessVector

0..*

theSystemVector

1..*

theSuperSystem

Figure 4.12: A diagram of classes involved in simulation

this Variable. In step phase, the Stepper calls fire() method of each Process object that

the Stepper holds. The Stepper may also change the step size and other parameters

(see the description of the driver algorithm in the previous chapter). Process objects

execute their transition functions, which may alter values or give velocities to Variables

via its VariableReferences. This procedure has been described in ’Implementation of

transition functions’ section. In log phase, log() methods of Loggers attached to Entity

objects in the Stepper are called. The following ’Data logging mechanism’ section will

describe this procedure in detail. In the dispatchInterruptions phase, the Stepper calls

interrupt() method of each Stepper dependent on it. Finally, the Scheduler reschedules

the stepping Stepper on the schedule priority queue.
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Figure 4.13: Simulation step sequence diagram
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4.2.6 Dynamic method invocation using PropertySlot

PropertiedClass gives objects an ability of dynamic method invocation (Figure 4.14)

via object property. Each object property has a pair of methods to set and get the

property. The simplest behaviors of these methods are to simply store and return

the value of a member variable. In E-Cell SE, a property has a type of one of Real

(floating-point real number), Integer, String, or list (called PolymorphVector in the im-

plementation). A PropertiedClass (e.g. a subclass of Entity or Stepper) object has a

static member object, thePropertyInterface, which associates PropertySlot objects with

property names. PropertySlot is a template base class of ConcretePropertySlot class,

which holds pointers to ’get method’ and ’set method’. There are two ways for a client

code to access a property of a PropertiedClass. The first way is to use getProperty()

and setProperty() member function of the PropertiedClass itself. These methods take

and return a Polymorph object, which is a type of object that can be created from and

converted to any of the property value types. Although simple and easy to use, this

property invocation scheme has some performance overhead (the property table lookup

and construction of a Polymorph object). The second way is to create a PropertySlot-

Proxy object first, and make accesses to the property via the proxy object. In this case,

the overhead of the creation of the PropertySlotProxy object is roughly the same as the

first way of property access, but from the second time it becomes considerably faster.

PropertySlotProxy is used in a form of its template child class, ConcretePropertySlot-

Proxy<T>, where T is the sub-class of the PropertiedClass to which the PropertySlot

belongs.

This mechanism of dynamically bound property access is used mainly in communication

between frontend modules and objects in the simulation model (Entity and Stepper).

For example, frontend software obtains or changes values of parameters of objects

during simulations using this PropertySlot facilities. In simulation, direct invocation
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PropertySlot<T>

+get<TYPE>(anObject:T&)

+set<TYPE>(anObject:T&, aValue:TYPE)

Entity

Stepper

PropertiedClass

+setProperty(aName:String, aValue:Polymorph)

+getProperty(aName:String)

+registerSlot()

+removeSlot()

+createPropertySlotProxy(aName:String)ConcretePropertySlotProxy

thePropertySlot

theObject

PropertySlotProxy

+get<TYPE>(anObject:T&)

+set<TYPE>(anObject:T&, aValue:TYPE)

PropertyInterface<T>

-thePropertySlotMap : static map<string,PropertySlotPtr>

0..*

thePropertyInterface (static)

0..*

ConcretePropertySlot<T,Type>

-GetMethod : MethodPointer<T,Type>

-SetMethod : MethodPointer<T,Type>

+get<TYPE>(anObject:T&)

+set<TYPE>(anObject:T&, aValue:TYPE)

0..*

thePropertyInterface (static)

0..*

thePropertySlot

theObject

Figure 4.14: PropertiedClass class diagram

of C++ methods are also used to maximize the performance.

4.2.7 Data logging mechanism

In E-Cell SE Version 3, Logger objects record the simulation results. This architec-

ture, where neither the Entity objects nor the frontends store the entire data, has the

following advantages.

• It keeps the structure of the system simple.

• There is no need to hold overlapping data when there are more than two view

objects in the frontend.

• Any frontend software can use a common data logging system via a simple API,
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Figure 4.15: A schematic view of the data logging mechanism

instead of accessing implementation details of libecs. Use of virtual memory

mechanism enables management of large amounts of data without limitation from

available RAM.

Figure 4.15 shows a schematic view of the data logging mechanism. Accepting a re-

quest from the frontend, LoggerBroker either creates and returns a new Logger object

connected with the requested property slot of the requested Entity, or simply gives a

reference to an existing Logger if the requested property in the Entity has already being

recorded by the Logger object.

Figure 4.16 is a UML class diagram depicting the classes related to data logging. The

Logger class has a PhysicalLogger object, which implements a physical data storage

mechanism. In this case, it is implemented using the vvector class, which is an imple-

mentation of a virtual memory system. A data source is connected to the Logger via a

LoggerAdapter object. Each subclass of LoggerAdapter is prepared for a type of data

source. When the original data source is a PropertiedClass object, such as an Entity
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theObject
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0..*
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Virtual array

on HDD.
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Figure 4.16: Logging class diagram

and a Stepper, the data is provided via a proxy object, ConcretePropertySlotProxy ob-

ject, and a subclass of LoggerAdapter, PropertySlotLoggerAdapter, which is designed to

get the data from a PropertySlotProxy object is necessary. Each PropertiedClass has

a static member PropertyInterface object that holds a table of PropertySlot objects.

Therefore, to access a PropertySlot of a PropertiedClass, the ConcretePropertySlot-

Proxy object must have two pointer member variables, theObject member variable that

points to the PropertiedClass object, and thePropertySlot member variable which spec-

ifies what PropertySlot the proxy is attached to.

When a Stepper steps in the simulation, it calls Logger objects attached to its Entities

(Variables, Processes and Systems). Figure 4.17 shows the sequence of data logging.

The Stepper calls each Logger’s log() method, and it eventually retrieves the value of

the property via PropertySlotLoggerAdapter and PropertySlotProxy objects. Then it
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 : Stepper  : Logger  : PropertySlotLoggerAdapter  : PropertySlotProxy Entity : PropertiedClass PhysicalLogger : 
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value : Real

value : Real

value : Real
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appendData( time, value ) : 

Figure 4.17: Logging sequence diagram

pushes the value into its PhysicalLogger object that implements the virtual-memory

data storage (vvector class in the Figure 4.16).

At first sight, this design, which involves more than ten classes, might seems to be

overly complicated considering the simple task that Logger is designed for. However,

the key idea is to implement the whole data logging mechanism in a generic way so

that the Logger class can be used with little modification when the system’s design

is changed or new classes of objects other than Entity and Stepper are made targets

of the data logging. Considering this gain in flexibility, the impact on performance is

negligible compared to the amount of operations that must be done to push a data

tuple into the virtual memory; at most two or three extra pointer de-referenciations

per a logging event.
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4.2.8 Implemented simulation algorithms

Virtually any time-driven simulation algorithms can be implemented as plug-ins of

E-Cell SE. Current version of the software is shipped with modules for simulation al-

gorithms including: (1) several variations of ODE and DAE solvers, (2) Gillespie-Gibson

stochastic simulation algorithm (Gibson and Bruck, 2000), (3) ESSYNS GMA/S-System

power-law canonical differential equations solver (Irvine and Savageau, 1990), (4) discrete-

time simulator, (5) a hybrid dynamic/static pathway simulation method (Yugi et al.,,

2002). Some more algorithm modules, including the tau leaping method (Gillespie,

2001), a cellular automata module, a diffusion-reaction module, a StochSim module

(Le Novere and Shimizu, 2001), and adaptive switching between Gillespie and ODE

methods are currently under development. Figure 4.18 summarizes development status

of algorithm modules as of E-Cell Simulation Environment Version 3.1.100, released in

January 2004.

4.3 Discussion

This thesis includes some selected chapters from the users’ manual of the software in

Appendix A. This stripped-down version of the manual should give enough information

to grasp the architecture of the system more in detail, and to know how the system can

be extended and customized for large-scale cell simulation projects. Readers interested

in more practical utility of the system are directed to the full version of the manual

(Takahashi, 2004).

E-Cell 3 is currently widely used for modeling, simulation and analysis of cell systems

and parts of cell systems. The latest version of E-Cell System as of January 2004 is

version 3.1.100. The first stable version, version 3.2 is going to be released in 2004.
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Figure 4.18: Algorithm modules being developed for E-Cell SE
Some algorithm modules available and being developed for E-Cell SE are listed.

Algorithm: the name of the simulation algorithm. Base class: the class name of the
Stepper base class. Features: some major features of the algorithm. Status:

development status of the algorithm module.
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Chapter 5

Conclusions

5.1 Summary

This thesis discussed numerical simulations in computational cell biology in three parts.

First we overviewed the area of research from the viewpoint of simulation studies, and

commonly used modeling schemes and numerical methods have been reviewed. We

performed a domain requirements analysis, and identified seven ’requirements’ desirable

for simulation platforms used in this field of research.

Secondly, a novel computational framework for cell simulation that can drive many sim-

ulation sub-models with different driving algorithms and accompanying timescales has

been developed. This object-oriented framework based on a discrete event scheduler

and Hermite polynomial interpolation, the ’meta-algorithm’, defines discrete and con-

tinuous ’transition functions’, and can incorporate virtually any, discrete/continuous

and deterministic/stochastic, time-driven simulation algorithms in a modular way. Im-

plemented simulation algorithm modules can be used in any combination. It was shown

that ’meta-algorithm’ can efficiently handle two relatively simple multi-algorithm and
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multi-timescale models, (1) the ODE/Gillespie composite E. coli heat shock response

model and (2) the model of multi-timescale coupled harmonic oscillators. It was sug-

gested that this framework will likely be scaled up to more realistic, complex and

large-scale computational cell biology problems.

Lastly, the ’meta-algorithm’ is implemented on E-Cell System, a generic software envi-

ronment for computational cell biology. It has been verified that, owing to its object-

oriented design, the meta-algorithm can be implemented on a real software platform

using popular C++ language in an intuitive and efficient way.

5.2 Future directions

Let us review the list of seven identified requirements yet again.

1. *Multi-algorithm simulation

2. *Multi-timescale simulation

3. *Object-oriented modeling

4. *Object-oriented simulation

5. *Runtime user interaction

6. Dynamic model structure

7. Spatial modeling and simulation

Marked with * (asterisk) are items we have given solutions in this thesis. The ’meta-

algorithm’ computational framework described in chapter 3 has been designed to meet

first two of the requirements, (1) multi-algorithm simulation and (2) multi-timescale
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simulation. The framework itself is object-oriented, and our software, E-Cell SE Version

3, is implemented in a fully object-oriented way. Therefore, we believe that we have

also been able to meet requirements (3) OO modeling and (4) OO simulation in this

work. Requirement (5), realtime UI, in addition to (3) and (4) are in fact some of those

items we could be able to fulfill in the previous version of the software, E-Cell System

Version 1 (Takahashi et al.,, 2003; Tomita et al.,, 1999).

Remaining two items are the requirement (6) Dynamic model structure, and (7) Spatial

modeling and simulation, which we will tackle in a future work to extend the ’meta-

algorithm’ that will form a basis of a succeeding version of the software.

5.2.1 Dynamic model structure

The necessity of dynamic structure modeling arises from the nature of the target sys-

tem, the cell. That is, as commonly observed in living systems, the cell changes its

physical, chemical and inter-cellular system structures constantly. There can be two

fundamentally different approaches to treat system structures as variables. The first

possibility is to use a special formalism that treats the structure as parameters. Power-

law formalisms such as S-System and GMA introduced in chapter 2 are some good

examples. These canonical differential systems treat dynamics parameters (i.e. rate

constants) and system structure indiscriminately as forms of coefficient matrices called

S-System or GMA matrix. Many are actively exploring this approach for network

structure prediction problems of bio-pathways such as genetic networks and signaling

cascades. For instance, a recently developed method called PEACE (Kikuchi et al.,,

2003), that can estimate network structure and kinetic parameters at the same time by

coupling a variant of Genetic Algorithms and S-System formalism is being implemented

on E-Cell Simulation Environment.
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Although very useful for applications in biochemical inverse problems, these method-

ologies rely on special types of formalisms, and thus have limited utility when how to

support dynamic structure in the generic simulation framework for computational cell

biology is to be considered. Thus the support must be at the level of the fundamental

framework, the meta-algorithm. Necessary improvements to the framework on this line

may include these points. We need:

1. to support dynamic changes in connections between objects, for instance Pro-

cesses and Variables (VariableReferences), Processes and Steppers, Systems and

other Entities.

2. a mechanism to notify related objects of creations and deletions of other objects

and changes in the connections between objects, and a programming framework

(e.g. APIs) to adequately handle these dynamic events.

5.2.2 Spatial modeling and simulation

There have been a number of works in spatial modeling of the cellular systems (for

example, see Howard et al., (2001); Loew and Schaff (2001)). However, most previ-

ous works are developed in a conventional a-method-per-problem fashion (review the

requirements 1 and 2). Rather, what we need here is a single generic framework that

can treat all the phenomena in the cell with spatial extent, such as molecular diffusion

in cytosol, vesicular trafficking, cytoplasmic streaming, cytoskeletal movement at the

same time. As discussed for the requirement 7 in the chapter 2, the framework should

be able to:

1. support development of algorithm modules for various spatial representations

used in, at least, reaction-diffusion systems, particle dynamics (such as Brownian
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dynamics), fluid dynamics, and dynamic morphological change of the cell.

2. allow interactions between these spatial sub-models.

There are at least two possible approaches to this problem. The first possibility is the

development of a new spatial framework in which all of often used spatial modeling

methodologies such as structured/unstructured meshings, voxel modeling, cellular au-

tomata etc. can be implemented. The other way is to look for an existing formalism

that is generic enough to handle those common spatial simulation methods, and can be

incorporated into the meta-algorithm framework easily. One of such existing formalisms

is Cellular Automata introduced in chapter 2. From a purely requirements-based view-

point, the former option is certainly beneficial because it is more generic and includes

CA as a special case. However, the difficulty of developing such a platform and how

efficient it can be is still highly unclear at this point of development. Therefore the

use of CA as an alternative looks somewhat attractive. Unlike the case of the design

options for the support for the dynamic model structure, both possibilities are equally

beneficial, and we need further investigations comparing any of these lines of design

options. Perhaps we would develop the CA framework first, and when it is found to be

not enough, proceed to the development of the generic support.

5.2.3 Other possible improvements

There is prior art in use of Hermite polynomial for multi-timescale simulations. In

Makino and Aarseth (1992), a Hermite integration scheme for gravitational many-

body problems is described. In this algorithm, each particle has an individual time

step size, and its position and velocity are integrated by using Hermite interpolation.

Owing to its single-formalism (the law of gravity) nature, higher order derivatives are

analytically available. Inspired by this related work is to integrate Hermite polynomial
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with the meta-algorithm framework more radically. Currently the calculations and uses

of the Hermite interpolants are implemented in each differential simulation algorithm

modules. By having the support for Hermite interpolants in the meta-algorithm itself,

we would be able to get more chances to even clean up the design and optimize the

implementation.

5.3 Conclusion

Design and implementation of a generic computational framework and scientific soft-

ware demand a way of thinking that is completely different from ordinary virtues in

many other scientific disciplines. Well defined and concrete problems often character-

ize good problem-driven scientific projects, whilst abstraction and generalization of the

problems are the driving forces for the algorithm and software developers. Although

at the time of writing this it is somewhat unclear that what extent of application

domains are to be given to the algorithmic, computational and software frameworks

developed in this work successfully, we strongly believe that, at least, necessity of novel

approaches to the computational problems those characterize the new field of com-

putational cell biology, including multi-formalism and multi-scale simulations, poses

genuine challenges. We hope that the ideas described in this work stimulates further

discussions and developments.
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Appendix A

Selected Manual Chapters

To aid readers in understanding E-Cell System’s object-model and overall architecture,
two chapters from E-Cell Simulation Environment Users’ manual have been selected
and presented. The first selected chapter, ’Modeling with E-Cell’ describes basics and
some practical aspects of the model construction in the software system. The other
’Scripting A Simulation Session’ chapter is presented here to show how the system allows
frontend modules including user-level scripting of simulation sessions, mathematical
analysis modules and graphical user interfaces. This appendix chapter is not intended
to be a complete users’ manual which describes everything necessary to get started to
use E-Cell System. Needless to say, those who want to actually try the software are
directed to the software manual itself (Takahashi, 2004).

A.1 Modeling With E-Cell

By reading this chapter, you can get information about:

How an E-Cell’s simulation model is organized.
How to create a simulation model.
How to write a model file in EM format.

Objects In The Model

E-Cell’s simulation model is fully object-oriented. That is, the simulation model is
actually a set of objects connected each other. The objects have properties, which
determine characteristics of the objects (such as a reaction rate constant if the object
represent a chemical reaction) and relationships between the objects.

134



A.1. MODELING WITH E-CELL

Types of the Objects

A simulation model of E-Cell Simulation Environment consists of the following types
of objects.

• Usually more than one Entity objects

• One or more Stepper object(s)

Entity objects define the structure of the simulation model and represented phenom-
ena (such as chemical reactions) in the model. Stepper objects implement specific
simulation algorithms.

Entity objects

The Entity class has three subclasses:

• Variable

This class of objects represent state variables. A Variable object holds a scalar
real-number value. A set of values of all Variable objects in a simulation model
defines the state of the model at a certain point in time.

• Process

This class of objects represent phenomena in the simulation model that result in
changes in the values of one or more Variable objects. The way of change of the
Variable values can be either discrete or continuous.

• System

This class of objects define overall structure of the model. A System object can
contain sets of these three types of Entity, Variable, Process, and System
objects. A System can contain other Systems, and can form a tree-like structure.

Stepper objects

A model must have one or more Stepper object(s). Each Process and System object
must be connected with a Stepper object in the same model. In other words, Stepper
objects in the model have non-overlapping sets of Process and System objects.

Stepper is a class which implement a specific simulation algorithm. If the model has
more than one Stepper objects, the system conducts a multi-stepper simulation. In
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addition to the lists of Process and System objects, a Stepper has a list of Variable
objects that can be read or written by its Process objects. It also has a time step
interval as a positive real-number. The system schedules Stepper objects according to
the step intervals, and updates the current time.

When called by the system, a Stepper object integrates values of related Variable
objects to the current time (if the model has a differential component), calls zero, one
or more Process objects connected with the Stepper in an order determined by its
implementation of the algorithm, and determines the next time step interval. See the
following chapters for details of the simulation procedure.

Object Identifiers

E-Cell Simulation Environment uses several types of identifier strings to specify the
objects, such as the Entity and Stepper objects, in a simulation model.

ID (Entity ID and Stepper ID)

Every Entity and Stepper object has an ID. ID is a character string of arbitrary length
starting from an alphabet or ’ ’ with succeeding alphabet, ’ ’, and numeric characters.
E-Cell Simulation Environment treats IDs in a case-sensitive way.

If the ID is used to indicate a Stepper object, it is called a Stepper ID. The ID points
to an Entity object is refered to as Entity ID, or just ID.

(need EBNF here) Examples: P3, ATP, GlucoKinase

SystemPath;

The SystemPath identifies a System from the tree-like hierarchy of System objects in a
simulation model. It has a form of Entity ID strings joined by a character ’/’ (slash).
As a special case, the SystemPath of the root system is /. For instance, if there is a
System A, and A has a subsystem B, a SystemPath /A/B specifies the System object B.
It has three parts: (1) the root system (/), (2) the System A directly under the root
system, and (3) the System B just under A.

A SystemPath can be relative. The relative SystemPath does not point at a System
object unless the current System is given. A SystemPath is relative if (1) it does not
start with the leading / (the root system), or (2) it contains ’.’ (the current system)
or ’..’ (the super-system).
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Examples: /A/B, ../A, ., /CELL/ER1/../CYTOSOL

FullID

A FullID (FULLy qualified IDentifier) identifies a unique Entity object in a simulation
model. A FullID comprises three parts, (1) a EntityType, (2) a SystemPath, and (3) an
Entity ID, joined by a character ’:’ (colon).

EntityType:SystemPath:ID

The EntityType is one of the following class names:

• System

• Process

• Variable

For example, the following FullID points to a Process object of which Entity ID is ’P’,
in the System ’CELL’ immediately under the root system (/).

Process:/CELL:P

FullPN

FullPN (FULLy qualified Property Name) specifies a unique property (see the next
section) of an Entity object in the simulation model. It has a form of a FullID and
the name of the property joined by a character ’:’ (colon).

FullID:property_name

or,

EntityType:SystemPath:ID:property_name

The following FullPN points to ’Value’ property of the Variable object Variable:/CELL:S.

Variable:/CELL:S:Value
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Object Properties

Entity and Stepper objects have properties. A property is an attribute of a certain
object associated with a name. Its value can be get from and set to the object.

Types of object properties

A value of a property has a type, which is one of the followings.

• Real number

(ex. 3.33e+10, 1.0)

• Integer number

(ex. 3, 100)

• String

String has two forms: quoted and not quoted. A quoted String can contain any
ASCII characters except the quotation characters (’ or ”). Quotations can be
omitted if the string has a form of a valid object identifier (Entity ID, Stepper
ID, SystemPath, FullID, or FullPN).

If the String is triple-quoted (by ’’’ or """), it can contain new-line characters.
(The current version still has some problems processing this.)

(ex. C10 A, Process:/A/B:P1, "It can include spaces if double-quoted.",
’single-quote is available too, if you want to use "double-quotes" inside.’)

• List

The list can contain Real, Integer, and String values. This list can also contain
other lists, that is, the list can be nested. A list must be surrounded by brackets
([ and ]), and the elements must be separated by space characters. In some cases
outermost brackets are omitted (such as in EM files, see below).

(ex. [ A 10 [ 1.0 "a string" 1e+10 ] ] )

Dynamic type adaptation of property values

The system automatically convert the type of the property value if it is different from
what the object in the simulator (such as Process and Variable) expects to get. That
is, the system does not necessary raise an error if the type of the given value differs
from the type the backend object accepts. The system tries to convert the type of the
value given in the model file to the requested type by the objects in the simulator. The
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conversion is done by the objects in the simulator, when it gets a property value. See
also the following sections.

The conversion is done in the following manner.

How property value type adaptation is conducted

• From a numeric value (Real or Integer)

– To a String
The number is simply converted to a character string. For example, a num-
ber 12.3 is converted to a String ’12.3’.

– To a list
A numeric value can be converted to a length-1 list which has that number
as the first item. For example, 12.3 is equivalent to ’[ 12.3 ]’.

• From a String

– To a numeric value (Real or Integer)
The initial portion of the String is converted to a numeric value. The number
can be represented either in a decimal form or a hexadecimal form. Leading
white space characters are ignored. ’INF’ and ’NAN’ (case-insensitive) are
converted to an infinity and a NaN (not-a-number), respectively. If the
initial portion of the String cannot be converted to a numeric value, it is
interpreted as a zero (0.0 or 0). This conversion procedure is equivalent to
C functions strtol and strtod, according to the destined type.

– To a list
A String can be converted to a length-1 list which has that String as the
first item. For example, ’string’ is equivalent to ’[ ’string’ ]’.

• From a list

– To a numeric or a String value
It simply takes the first item of the list. If necessary the taken value is
further converted to the destined types.
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Overflow and underflow when converting a property
value

When converting from a Real number to an Integer, or from a String
to a numeric value, overflow and underflow can occur during the
conversion. In this case an exception (TYPE??) is raised when the
backend object attempts the conversion.

E-Cell Model (EM) File Basics

Now you know the E-Cell’s simulation model consists of what types of objects, and
the objects have their properties. The next thing to understand is how the simulation
model is organized: the structure of the model. But wait, learn the syntax of the E-Cell
model (EM) file before proceeding to the next section would help you very much to
understand the details of the structure of the model, because most of the example codes
are in EM.

What is EM?

In E-Cell Simulation Environment, the standard file format of model description and
exchange is XML-based EML (E-Cell Model description Language). Although EML
is an ideal means of integrating E-Cell with other software components such as GUI
model editors and databases, it is very tedious for human users to write and edit by
hand.

E-Cell Model (EM) is a file format with a programming language-like syntax and a
powerful embedded empy preprocessor, which is designed to be productive and intu-
itive especially when handled by text editors and other text processing programs such
as UNIX’s grep, diff and cat. Semantics of EM and EML files are almost completely
equivalent to each other, and going between these two formats is meant to be possi-
ble with no loss of information (some exceptions are comments and directions to the
preprocessor in EM). The file suffix of EM files is ”.em”.

Why and when use EM?

Although E-Cell Modeling Environment (which is under development) will provide
means of more sophisticated, scalable and intelligent model construction on the basis
of EML, learning syntax and semantics of EM may help you to get the idea of how
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object model inside E-Cell is organized and how it is driven to conduct simulations.
Furthermore, owing to the nature of plain programming language-like syntax, EM can
be used as a simple and intuitive tool to communicate with other E-Cell users. In fact,
this manual uses EM to illustrate how the model is constructed in E-Cell.

EM files can be viewed as EML generator scripts.

EM at a Glance

Before getting into the details of EM syntax, let’s have a look at a tiny example. It’s
very simple, but you do not need to understand everything for the moment.

This example is a model of a mass-action differential equation. In this example, the
model has a Stepper ODE 1 of class ODE45Stepper, which is a generic ordinary dif-
ferential equation solver. The model also has the root system (/). The root sytem
has the StepperID property, and four Entity objects, Variables SIZE, S and P, and
the Process E. SIZE is a special name of the Variable, that determines the size of
the compartment. If the compartment is three-dimensional, it means the volume of
the compartment in [L] (liter). That value is used to calculate concentrations of other
Variables. These Entity objects have their property values of several different types.
For example, StepperID of the root system is the string without quotes (ODE 1). The
initial value given to Value property of the Variable S is an integer number 10000
(and this is automatically converted to a real number 10000.0 when the Variable gets
it because the type of the Value property is Real). Name property of the Process E
is the quoted string "A mass action from S to P", and ’k’ of it is the real number
1.0. VariableReferenceList property of E is the list of two lists, which contain strings
(such as S0), and numbers (such as -1). The list contain relative FullIDs (such as :.:S)
without quotes.

General Syntax of EM

Basically an EM is (and thus an EML is) a list of just one type of directives: object
instantiation. As we have seen, E-Cell’s simulation models have only two types of
’objects’; Stepper and Entity. After creating an object, property values of the object
must be set. Therefore the object instantiation has two steps: (1) creating the object
and (2) setting properties.

General form of object instantiation statements

The following is the general form of definition (instantiation) of an object in EM:
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Stepper ODE45Stepper( ODE_1 )
{

# no property
}

System System( / )
{

StepperID ODE_1;

Variable Variable( SIZE )
{

Value 1e-18;
}

Variable Variable( S )
{

Value 10000;
}

Variable Variable( P )
{

Value 0;
}

Process MassActionFluxProcess( E )
{

Name "A mass action from S to P."
k 1.0;

VariableReferenceList [ S0 :.:S -1 ]
[ P0 :.:P 1 ];

}

}

Example A.1.1: A tiny EM example

TYPE CLASSNAME( ID )
"""INFO (optional)"""
{

PROPERTY_NAME_1 PROPERTY_VALUE_1;
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PROPERTY_NAME_2 PROPERTY_VALUE_2;
...
PROPERTY_NAME_n PROPERTY_VALUE_n;

}

where:

• TYPE

The type of the object, which is one of the followings:

– Stepper

– Variable

– Process

– System

• ID

This is a StepperID if the object type is Stepper. If it is System, put a SystemPath
here. Fill in an Entity ID if it is a Variable or a Process.

• CLASSNAME

The classname of this object. This class must be a subclass of the baseclass
defined by TYPE. For example, if the TYPE is Process, CLASSNAME must be
a subclass of Process, such as MassActionFluxProcess.

• INFO

An annotation for this object. This field is optional, and is not used in the
simulation. A quoted single-line (”string”) or a multi-line string (”””multi-line
string”””) can be put here.

• PROPERTY

An object definition has zero or more properties.

The property starts with an unquoted property name string, followed by a prop-
erty value, and ends with a semi-colon (;). For example, if the property name is
Concentration and the value is 10.0, it may look like:

Concentration 10.0;

Real, Integer, String, and List are allowed as property value types (See the Object
Properties section above).

If the value is a List, outermost brackets are omitted. For example, to put a list

143



A.1. MODELING WITH E-CELL

[ 10 "string" [ LIST ] ]

into a property slot Foo, write a line in the object definition like this:

Foo 10 "string" [ LIST ];

Why the outermost brackets can be ommited?

All property values are lists, even if it is a scalar Real number.
Remember a number ’1.0’ is interconvertible with a length-
1 list ’[ 1.0 ]’. Therefore the system can correctly interpret
property values without the brackets.

In other words, if the property value is bracketed, for example,
the following property value

Foo [ 10 [ LIST ] ];

is interpreted by the system as a length-1 List

[ [ 10 [ LIST ] ] ]

of which the first item is a list

[ 10 [ LIST ] ]

This may or may not be what you intend to have.

Macros and Preprocessing

Before converting to EML, ecell3-em2eml command invokes the empy program to
preprocess the given EM file.

By using empy, you can embed any Python expressions and statements after ’@’ in
an EM file. Put a Python expression inside ’@( python expression )’, and the macro
will be replated with an evaluation of the expression. If the expression is very simple,
’()’ can be ommited. Use ’@{ pytyon statements }’ to embed Python statements. For
example, the following code:
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@(AA=’10’)
@AA

is expanded to:

10

Of course the statement can be multi-line. This code

@{
def f( str ):

return str + ’ is true.’
}

@f( ’Video Games Boost Visual Skills’ )

is expanded to

Video Games Boost Visual Skills is true.

empy can also be used to include other files. The following line is replaced with the
content of the file foo.em immediately before the EM file is converted to an EML:

@include( ’foo.em’ )

Use -E option of ecell3-em2eml command to see what happens in the preprocessing.
With this option, it outputs the result of the preprocessing to standard output and
stops without creating an EML file.

It has many more nice features. See the appendix A for the full description of the empy
program.

Comments

The comment character is a sharp ’#’. If a line contains a ’#’ outside a quoted-string,
anything after the character is considered a comment, and not processed by the ecell3-
em2eml command.
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This is processed differently from the empy comments (@#). This comment character
is processed by the empy as a usual character, and does not have an effect on the
preprocessor. That is, the part of the line after ’#’ is not ignored by empy preprocessor.
To comment out an empy macro, the empy comment (@#) must be used.

Structure Of The Model

Top Level Elements

Usually an EM has one or more Stepper and one or more System statements. These
statements are top-level elements of the file. General structure of an EM file may look
like this:

STEPPER_0
STEPPER_1
...
STEPPER_n

SYSTEM_0 # the root system ( ’/’ )
SYSTEM_1
...
SYSTEM_m

STEPPER ? is a Stepper statement and SYSTEM ? is a System statement.

Systems

The root system

The model must have a System with a SystemPath ’/’. This System is called the root
system of the model.

System System( / )
{

# ...
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}

The class of the root system is always System, no matter what class you specify. This
is because the simulator creates the root sytem when it starts up, before loading the
model file. That is, the statement does not actually create the root system object when
loading the EML file, but just set its property values. Consequently the class name
specified in the EML is ignored. The model file must always have this root system
statement, even if you have no property to set.

Constructing the system tree

If the model has more than one System objects, it must form a tree which starts from
the root system (/). For example, the following is not a valid EM.

System System( / )
{
}

System System( /CELL0/MITOCHONDRION0 )
{
}

This is invalid because these two System objects, / and /CELL0/MITOCHONDRION0 are
not connected to each other, nor form a single tree. Adding another System, /CELL0,
makes it valid.

System System( / )
{
}

System System( /CELL0 )
{
}

System System( /CELL0/MITOCHONDRION0 )
{
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}

Of course a System can have arbitrary number of sub-systems.

System System( / )
{
}

System System( /CELL1 ) {}
System System( /CELL2 ) {}
System System( /CELL3 ) {}
# ...

Planned support for model composition

In future versions, the system will support composing a model from
multiple model files (EMs or EMLs). This is not the same as the
EM’s file inclusion by empy preprocessor.

Sizes of the Systems

If you want to define the size of a System, create a Variable with an ID ’SIZE’. If the
System models a three-dimensional compartment, the SIZE here means the volume of
that compartment. The unit of the volume is [L] (liter). In the next example, size of
the root system is 1e-18.

System System( / )
{

Variable Variable( SIZE ) # the size (volume) of this compartment
{

Value 1e-18;
}

}
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If a System has no ’SIZE’ Variable, then it shares the SIZE Variable with its supersys-
tem. The root system always has its SIZE Variable. If it is not given by the model file,
then the simulator automatically creates it with the default value 1.0. The following
example has four System objects, and two of them (/ and /COMPARTMENT) have their own
SIZE variables. Remaining two (/SUBSYSTEM and its subsystem /SUBSYSTEM/SUBSUBSYSTEM)
share the SIZE Variable with the root system.

System System( / ) # SIZE == 1.0 (default)
{

# no SIZE
}

System System( /COMPARTMENT ) # SIZE == 2.0e-15
{

Variable Variable( SIZE )
{

Value 2.0e-15
}

}

System System( /SUBSYSTEM ) # SIZE == SIZE of the root sytem
{

# no SIZE
}

System System( /SUBSYSTEM/SUBSUBSYSTEM ) # SIZE == SIZE of the root system
{

# no SIZE
}

SIZE must be a positive real number

Behavior of the system when zero or negative number is set to SIZE
is undefined.
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Unit of the size

Currently, the unit of the SIZE is (10 cm)d, where d is dimension of
the System. If d is 3, it is (10 cm)3 == liter. This specification is
still under discussion, and is subject to change in future versions.

Variables and Processes

A System statement has zero, one or more Variable and Process statements in addi-
tion to its properties.

System System( / )
{

# ... properties of this System itself comes here..

Variable Variable( V0 ) {}
Variable Variable( V1 ) {}
# ...
Variable Variable( Vn ) {}

Process SomeProcess( P0 ) {}
Process SomeProcess( P1 ) {}
# ...
Process OtherProcess( Pm ) {}

}

Do not put a System statement inside System.

Connecting Steppers with Entity Objects

Any Process and Variable object in the model must be connected with a Stepper by
setting its StepperID property. If the StepperID of a Process is omitted, it defaults
to that of its supersystm (the System the Process belongs to). StepperID of System
cannot be omitted.

In the following example, the root sytem is connected to the Stepper STEPPER0, and
the Process P0 and P1 belong to Steppers STEPPER0 and STEPPER1, respectively.
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Stepper SomeClassOfStepper( STEPPER0 ) {}
Stepper AnotherClassOfStepper( STEPPER1 ) {}

System System( / ) # connected to STEPPER0
{

StepperID STEPPER0;

Process AProcess( P0 ) # connected to STEPPER0
{

# No StepperID specified.
}

Process AProcess( P1 ) # connected to STEPPER1
{

StepperID STEPPER1;
}

}

Connections between Steppers and Variables are automatically determined by the
system, and cannot be specified manually. See the next section.

Connecting Variable Objects with Processes

A Process object changes values of Variable object(s) according to a certain proce-
dure, such as the law of mass action. What Variable objects the Process works on
cannot be determined when it is programmed, but it must be specified by the modeler
when the Process takes part in the simulation. VariableReferenceList property of the
Process relates some Variable objects with the Process.

VariableReferenceList is a list of VariableReferences. A VariableReference, in turn, is
usually a list of the following four elements:

[ reference_name FullID coefficient accessor_flag ]

The last two fields can be omitted:

[ reference_name FullID coefficient ]

or,
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[ reference_name FullID ]

These elements have the following meanings.

1. Reference name

This field gives a local name inside the Process to this VariableReference. Some
Process classes use this name to identify particular instances of VariableRefer-
ence.

Currently, this reference name must be set for all VariableReferences, even if the
Process does not use the name at all.

Lexical rule for this field is the same as the Entity ID; leading alphabet or ’ ’ with
trailing alphabet, ’ ’, and numeric characters.

2. FullID

This FullID specifies the Variable that this VariableReference points to.

The SystemPath of this FullID can be relative. Also, EntityType can be omitted.
That is, writing like this is allowed:

:.:S0

instead of

Variable:/CELL:S0

, if the Process exists in the System /CELL.

3. Coefficient (optional)

This coefficient is an integer value that defines weight of the connection between
the Process and the Variable that this VariableReference points to.

If this value is a non-zero integer, then this VariableReference is said to be a mu-
tator VariableReference, and the Process can change the value of the Variable.
If the value is zero, this VariableReference is not a mutator, and the Process
should not change the value of the Variable.

If the Process represents a chemical reaction, this value is usually interpreted by
the Process as a stoichiometric constant. For example, if the coefficient is -1,
the value of the Variable is decreased by 1 in a single occurence of the forward
reaction.

If omitted, this field defaults to zero.
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4. isAccessor flag (optional)

This is a binary flag; set either 1 (true) or 0 (false). If this isAccessor flag is false,
it indicates that the behavior of Process is not affected by the Variable that
this VariableReference points to. That is, the Process never reads the value of
the Variable. The Process may or may not change the Variable regardless of
the value of this field.

Some Process objects automatically sets this information, if it knows it never
changes the value of the Variable of this VariableReference. Care should be
taken when you set this flag manually, because many Process classes do not
check this flag when actually read the value of the Variable.

The default is 1 (true). This field is often omitted.

How isAccessor flag is used in the simulation

In multi-stepper simulations, this information sometimes helps
the system to run efficiently. If the system knows, for ex-
ample, all Process objects in the Stepper A do not change
any Variable connected to the other Stepper B, it can give
B more chance to have larger stepsizes, rather than always
checking whether Stepper A changed some of the Variable
objects. This flag is mainly used when there are more than one
Steppers.

Consider a reaction Process in the root system, R, consumes the Variable S and
produces the Variable P, taking E as the enzyme. This class of Process requires to
give the enzyme as a VariableReference of name ENZYME. All the Variable objects are
in the root system. In EM, VariableReferenceList of this Process may appear like this:

System System( / )
{

# ...
Variable Variable( S ) {}
Variable Variable( P ) {}
Variable Variable( E ) {}

Process SomeReactionProcess( R )
{

# ...
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VariableReferenceList [ S0 :.:S -1 ]
[ P0 :.:P 1 ]
[ ENZYME :.:E 0 ];

}
}

Modeling Schemes

E-Cell is a multi-algorithm simulator. It can run any kind of simulation algorithms,
both discrete and continuous, and these simulation algorithms can be used in any
combinations. This section exlains how you can find appropriate set of object classes
for your modeling and simulation projects. This section does not give a complete list of
available object classes nor detailed usage of those classes. Read the chapter ”Standard
Dynamic Module Library” for more info.

Discrete or Continuous ?

E-Cell can model both discrete and continuous processes, and these can be mixed
in simulation. The system models discrete and continuous systems by discriminating
two different types of Process and Stepper objects: discrete Process / Stepper and
continuous Process / Stepper.

Variable is discrete and continous

Variable and System do not have special discrete and continu-
ous classes. The base Variable class supports both discrete and
continous operations, because it can be connected to any types of
Process and Stepper objects. System objects do not do any com-
putation that needs to discriminate discrete and continuos.

Discrete classes

A Process object that models discrete changes of one or more Variable objects is
called a discrete Process, and it must be used in conjunction with a discrete Stepper.
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A discrete Process directly changes the values of related Variable objects when its
Stepper requests to do so.

Continuous classes

On the other hand, a Process that calculates continuous changes of Variable objects
is called a continuous Process, and is used in combination with a continuous Stepper.
Continuous Process objects simulate the phenomena that represents by setting ve-
locities of connected Variable objects, rather than directly changing their values in
the case of discrete Process objects. A continuous Stepper integrates the values of
Variable objects from the velocities given by the continuous Process objects, and
determines when the velocities should be recalculated by the Process objects. A typi-
cal application of continuous Process and Stepper objects is to implement differential
equations and differential equation solvers, respectively, to form a simulation system of
the system of differential equations.

Types of discrete object classes

There are two types of discrete Process / Stepper classes: discrete and discrete event.

• Discrete

A discrete Process changes values of connected Variable objects (i.e. appear in
its VariableReferenceList property) discretely. In the current version, there is no
special class named DiscreteProcess, because the base Process class is already
a discrete Process by default. The manner of the change of Variable values
is determined from values of its accessor VariableReferences, its property values,
and sometimes the current time of the Stepper. Unlike discrete event Process,
which is explained in the next item, it does not necessary specify when the discrete
changes of Variable values occur. Instead, it is unilaterally determined and fired
by a discrete Stepper.

A Stepper that requires all Process objects connected is discrete Process objects
is call a discrete Stepper. The current version has no special class DiscreteStepper,
because the base Stepper class is already discrete.

• Discrete event

Discrete event is a special case of discreteness. The system provides DiscreteEventStepper
and DiscreteEventProcess classes for discrete-event modeling. In addition to
the ordinary firing method (process() method) of the base Process class, the
DiscreteEventProcess defines a method to calculate when is the next occur-
rence of the event (the discrete change of Variable values that this discrete
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event Process models) from values of its accessor VariableReferences, its prop-
erty values, and the current time of the Stepper. DiscreteEventStepper uses
information given by this method to determine when each of discrete event
Process should be fired. DiscreteEventStepper is instantiatable. See the
chapter Standard Dynamic Module Library for more detailed description of how
DiscreteEventStepper works.

Followings are some examples of discrete types of object classes that the current version
of E-Cell provides by default.

DiscreteTimeStepper

A type of discrete Stepper that is provided by the system is DiscreteTimeStepper.
This class of Stepper, when instantiated, calls all discrete Process objects with a fixed
user-specified time-interval. For example, if the model has a DiscreteTimeStepper
with 0.001 (second) of StepInterval property, it fires all of its Process objects every
milli-second. DiscreteTimeStepper is discrete time because it does not have time
between steps; it ignores a signal from other Stepper (Stepper interruption) that no-
tifies a change of system state (values of Variable objects) that may affect its Process
objects. Such change is reflected in the next step.

PassiveStepper

Another class of discrete Stepper is PassiveStepper. This can be partially seen as a
DiscreteTimeStepper with an infinite StepInterval, but there is a difference. Unlike
DiscreteTimeStepper, this does not ignore Stepper interruptions, which notify change
in the system state that may affect this Stepper’s Process objects.

This Stepper is used when some special procedures (coded in discrete Process objects)
must be invoked when other Stepper object may have changed a value or a velocity of
at least one Variable that this Stepper’s Process objects accesses.

GillespieProcess and NRStepper (Gillespie-Gibson pair)

An example of discrete-event classes provided by E-Cell is a pair of GillespieProcess
and NRStepper. GillespieProcess, which is a subclass of DiscreteEventProcess,
calculates a time of the next occurence of the reaction using Gillespie’s reaction prob-
ability equation and a random number. When this class is used with a Stepper (by
setting a value of StepperID property) that implements the Gibson’s Next Reaction
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Method, NRStepper, E-Cell conducts a Gillespie-Gibson stochastic simulation of ele-
mentary chemical reactions. In fact, NRStepper is an alias to DiscreteEventStepper,
because Gillespie-Gibson method is actually a typical discrete-event simulation. (See
the next tutorial for detailed usage of GillespieProcess and NRStepper.)

Types of continuous object classes

Classes for ordinary differential equations

Continuous Process and Stepper objects are usually used to model differential systems:
a set of differential equations.

Modeling Convensions

Units

In E-Cell Simulation Environment, the following units are used. This standard is meant
only for the simulator’s internal representation, and any units can be used in the process
of modeling. However, it must be converted to these standard units before loaded by
the simulator.

• Time

s (second)

• Volume

L (liter)

• Concentration

Molar concentration (M, or molar per L (liter), used for example in MolarConc
property of a Variable object) or,

Number concentration (number per L (liter), NumberConc property of Variable
has this unit).

A.2 Scripting A Simulation Session

By reading this chapter, you can get information about the following items:
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What is E-Cell Session Script (ESS).
How to run ESS in scripting mode.
How to use ESS in GUI mode.
How to automate a simulation run by writing an ESS file.
How to write frontend software components for E-Cell in Python.

Session Scripting

An E-Cell Session Script (ESS) is a Python script which is loaded by a E-Cell Session
object. A Session instance represents a single run of a simulation.

An ESS is used to automate a single run of a simulation session. A simple simulation
run typically involves the following five stages:

1. Loading a model file.

Usually an EML file is loaded.

2. Pre-simulation setup of the simulator.

Simulator and model parameters, such as initial values of Variable objects and
property values of Process objects, are set and/or altered. Also, data Loggers
may be created in this phase.

3. Running the simulation.

The simulation is run for a certain length of time.

4. Post-simulation data processing.

In this phase, the resulting state of the model after the simulation and the data
logged by the Logger objects are examined. The simulation result may be numer-
ically processed. If necessary, go back to the previous step and run the simulation
for more seconds.

5. Data saving.

Finally, the processed and raw simulation result data are saved to files.

An ESS file usually has an extension ’.py’.

Running E-Cell Session Script

There are three ways to execute ESS;
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• Execute the script from the operating system’s command line (the shell prompt).

• Load the script from frontend software such as Osogo Session Monitor.

• Use SessionManager to automate the invokation of the simulation sessions itself.
This is usually used to write mathematical analysis scripts, such as parameter
tuning, which involves multiple runs of the simulator.

Running ESS in command line mode

An ESS can be run by using ecell3-session command either in batch mode or in
interactive mode.

Batch mode

To execute an ESS file without user interaction, type the following command at the
shell prompt:

$ ecell3-session -f model.eml -e ess.py

ecell3-session command creates a simulation Session object and executes the ESS
file ess.py on it. The option [-e] can be omitted. Optionally, if [-f model.eml] is given,
the EML file model.eml is loaded immediately before executing the ESS.

Interactive mode

To run the ecell3-session in interactive mode, invoke the command without an ESS
file.

$ ecell3-session -f model.eml
ecell3-session [ for E-Cell SE Version 3, on Python Version 2.2.1 ]
Copyright (C) 1996-2002 Keio University.
Send feedback to Kouichi Takahashi shafi@e-cell.org
ecell3-session>>>
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The banner and the prompt shown here may vary according to the version you are using.
If the option [-f model.eml] is given, the EML file model.eml is loaded immediately
before prompting.

Giving parameters to the script

Optionally session parameters can be given to the script. Given session parameters can
be accessible from the ESS script as global variables (see the following section).

To give the ESS parameters from the ecell3-session command, use either -D or
--parameters= option.

$ ecell3-session -DNAME1=VALUE1 -DNAME2=VALUE2...
$ ecell3-session --parameters="{’NAME1’:VALUE1,’NAME2’:VALUE2,...}"

Both ways, -D and --parameters, can be mixed.

Loading ESS from Osogo Session Monitor

To manually load an ESS file from the GUI, use File->loadScript menu button.

gecell command accepts -e and -f options in the same way as the ecell3-session
command.

Writing E-Cell Session Script

The syntax of ESS is a full set of Python language with some convenient features.

Using Session methods

General rules

In ESS, an instance of Session is given, and any methods defined in the class can be
used as if it is defined in the global namespace.
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For example, to run the simulation for 10 seconds, use run method of the Session
object.

self.run( 10 )

where self. points to the current Session object given by the system. Alternatively,
you can use theSession in place of the self.

theSession.run( 10 )

Unlike usual Python script, you can omit the object on which the method is called if
the method is for the current Session.

run( 10 )

Loading a model

Let’s try this in the interactive mode of the ecell3-session command. On the prompt
of the command, load an EML file by using loadModel() method.

ecell3-session>>> loadModel( ’simple.eml’ )

Then the prompt changes from ecell3-session>>> to model name, t=current
time>>>

simple.eml, t=0>>>

Running the simulation

To proceed the time by executing the simulation, step() and run() methods are used.

simple.eml, t=0>>> step()
simple.eml, t=0>>> step()
simple.eml, t=7.67306e-07>>> run( 10 )
simple.eml, t=10.0032>>>
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step( n ) conducts n steps of the simulation. The default value of n is 1.

Note

In above example you may notice that the first call of step() does
not cause the time to change. The simulator updates the time at
the beginning of the step, and calculates a tentative step size after
that. The initial value of the step size is zero. Thus it needs to call
step() twice to actually proceed the time. See chapter 6 for details
of the simulation mechanism.

To execute the simulation for some seconds, call run method with a duration in seconds.
(e.g. run( 10 ) for 10 seconds.) run method steps the simulation repeatedly, and stops
when the time is proceeded for the given seconds. In other words, the meaning of run(
10 ) is to run the simulation at least 10 seconds. It always overrun the specified length
of time to a greater or less.

The system supports run without an argument to run forever, if and only if both event
checker and event handler are set. If not, it raises an exception. See setEventChecker()
in the method list of Session class.

Getting current time

To get the current time of the simulator, getCurrentTime() method can be used.

simple.eml, t=10.0032>>> getCurrentTime()
10.003221620379463

Printing messages

You may want to print some messages in your ESS. Use message( message ) method,
where message argument is a string to be outputed.

By default the message is handled in a way the same as the Python’s print statement;
it is printed out to the standard out with a trailing new line. This behavior can be
changed by using setMessageMethod() method.
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An example of using Session methods

Here is a tiny example of using Session methods which loads a model, run a hundred
seconds, and print a short message.

loadModel( ’simple.eml’ )
run( 100 )
message( ’stopped at %f seconds.’ % getCurrentTime() )

Example A.2.1: A simple ESS example.

Getting Session Parameters.

Session parameters are given to an ESS as global variables. Therefore usage of the
session parameters is very simple. For example, if you can assume a session parameter
MODELFILE is given, just use it as a variable:

loadModel( MODELFILE )

To check what parameters are given to ESS, use dir() or globals() built-in functions.
Session parameters are listed as well as other available methods and variables. To check
if a certain ESS parameter or a global variable is given, write an if statement like this:

if ’MODELFILE’ in globals():
# MODELFILE is given

else:
# not given

Note

Currently there is no way to distinguish the Session parameters from
other global variables from ESS.
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Observing and Manipulating the Model with ObjectStubs

What is ObjectStub?

ObjectStub is a proxy object in the frontend side of the system which corresponds to
an internal object in the simulator. Any operations on the simulator’s internal objects
should be done via the ObjectStub.

There are three types of ObjectStub:

• EntityStub

• StepperStub

• LoggerStub

each correspond to Entity, Stepper, and Logger classes in the simulator, respectively.

Why ObjectStub is needed

ObjectStub classes are actually thin wrappers over the ecell.ecs.Simulator class
of the E-Cell Python Library, which provides object-oriented appearance to the flat
procedure-oriented API of the class. Although Simulator object can be accessed di-
rectly via theSimulator property of Session class, use of ObjectStub is encouraged.

This backend / frontend isolation is needed because lifetimes of backend objects are
not the same as that of frontend objects, nor are their state transitions necessarily
synchronous. If the frontend directly manipulates the internal objects of the simulator,
consistency of the lifetime and the state of the objects can easily be violated, which
must not happen, without some complicated and tricky software mechanism.

Creating an ObjectStub by ID

To get an ObjectStub object, createEntityStub(), createStepperStub(), and createLoggerStub()
methods of Session class are used.

For example, to get an EntityStub, call the createEntityStub() method with a FullID
string:

anADPStub = createEntityStub( ’Variable:/CELL/MT1:ADP’ )
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Similarly, a StepperStub object and a LoggerStub object can be retrieved with a
StepperID and a FullPN, respectively.

aStepperStub = createStepperStub( ’STEPPER_01’ )

aLoggerStub = createLoggerStub( ’Variable:/CELL/MT1:GLUCOSE:Concentration’ )

Creating and checking existence of the backend object

Creating an ObjectStub does not necessarily mean a corresponding object in the sim-
ulator backend exists, or is created. In other words, creation of the ObjectStub is
purely a frontend operation. After creating an ObjectStub, you may want to check
if the corresponding backend object exists, and/or to command the backend to create
the backend object.

To check if a corresponding object to an ObjectStub exists in the simulator, use
isExist() method. For example, the following if statement checks if a Stepper whose
ID is STEPPER 01 exists:

aStepperStub = createStepperStub( ’STEPPER_01’ )
if aStepperStub.isExist():

# it already exists
else:

# it is not created yet

To create the backend object, just call create() method.

aStepperStub.create()# Stepper ’STEPPER_01’ is created here

Getting the name and a class name from an ObjectStub

To get the name (or an ID) of an ObjectStub, use getName() method.

To get the class name of an EntityStub or a StepperStub, call getClassName()
method. This operation is not applicable to LoggerStub.
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Setting and getting properties

As described in the previous chapters, Entity and Stepper objects has properties. This
section describes how to access the object properties via ObjectStubs. This section is
not applicable to LoggerStubs.

To get a property value from a backend object by using an EntityStub or a StepperStub,
invoke getProperty() method or access an object attribute with a property name:

aValue = aStub.getProperty( ’Activity’ )

or equivalently,

aValue = aStub[ ’Activity’ ]

To set a new property value to an Entity or a Stepper, call setProperty() method
or mutate an object attribute with a property name and the new value:

aStub.getProperty( ’Activity’, aNewValue )

or equivalently,

aStub[ ’Activity’ ] = aNewValue

List of all the properties can be gotten by using getPropertyList method, which
returns a list of property names as a Python tuple containing string objects.

aStub.getPropertyList()

To know if a property is getable (accessible) or setable (mutable), call getPropertyAttribute()
with the name of the property. The method returns a Python tuple whose first element
is true if the property is setable, and the second element is true if it is getable. At-
tempts to get a value from an inaccessible property and to set a value to a immutable
property result in exceptions.

aStub.getPropertyAttribute( ’Activity’ )[0] # true if setable
aStub.getPropertyAttribute( ’Activity’ )[1] # true if getable
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Getting Logger data

To get logged data from a LoggerStub, use getData() method.

getData() method has three forms according to requested range and time resolution of
the data:

• getData()

Get the whole data.

• getData( starttime [, endtime] )

Get a slice of the data from starttime to endtime. If endtime is omitted, the slice
includes the tail of the data.

• getData( starttime, endtime, interval )

Get a slice of the data from starttime to endtime. This omits data points if a
time interval between two datapoints is smaller than interval. This is not suitable
for scientific data analysis, but optimized for speed.

getData() method returns a rank-2 (matrix) array object of Numeric Python module.
The array has either one of the following forms:

[ [ time value average min max ]
[ time value average min max ]

... ]

or

[ [ time value ]
[ time value ]

... ]

The first five-tuple data format has five values in a single datapoint:

• time

The time of the data point.

• value

The value at the time point.
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• average

The time-weighted average of the value after the last data point to the time of
this data point.

• min

The minimum value after the last data point to the time of this data point.

• max

The maximum value after the last data point to the time of this data point.

The two-tuple data format has only time and value.

To know the start time, the end time, and the size of the logged data before getting data,
use getStartTime(), getEndTime(), and getSize() methods of LoggerStub. getSize()
returns the number of data points stored in the Logger.

Getting and changing logging interval

Logging interval of a Logger can be checked and changed by using getMinimumInterval()
and setMinimumInterval( interval ) methods of LoggerStub. interval must be a zero
or positive number in second. If interval is a non-zero positive number, the Logger
skips logging if a simulation step occurs before interval second past the last logging
time point. If interval is zero, the Logger logs at every simulation step.

An example usage of an EntityStub

The following example loads an EML file, and prints the value of ATP Variable in
System /CELL every 10 seconds. If the value is below 1000, it stops the simulation.

Handling Data Files

About ECD file

E-Cell SE uses ECD (E-Cell Data) file format to store simulation results. ECD is a
plain text file, and easily handled by user-written and third-party data processing and
plotting software such as gnuplot.

An ECD file can store a matrix of floating-point numbers.
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loadModel( ’simple.eml’ )

ATP = createEntityStub( ’Variable:/CELL:ATP’ )

while 1:

ATPValue = ATP[ ’Value’ ]

message( ’ATP value = %s’ % ATPValue )

if ATPValue <= 1000:
break

run( 10 )

message( ’Stopped at %s.’ % getCurrentTime() )

Example A.2.2: An ESS to check ATP level every 10 seconds

ecell.ECDDataFile class can be used to save and load ECD files. A ECDDataFile
object takes and returns a rank-2 array of Numeric Python. A ’rank-2’ array is a
matrix, which means that Numeric.rank( ARRAY ) and len( Numeric.shape( ARRAY
) ) returns ’2’.

Importing ECDDataFile class

To import the ECDDataFile class, import the whole ecell module,

import ecell

or import ecell.ECDDataFile module selectively.

import ecell.ECDDataFile

Saving and loading data

To save data to an ECD file, say, datafile.ecd, instantiate an ECDDataFile object
and use save() method.
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import ecell
aDataFile = ecell.ECDDataFile( DATA )
aDataFile.save( ’datafile.ecd’ )

here DATA is a rank-2 array of Numeric Python or an equivalent object. The data can
also be set by using setData() method after the instantiation. If the data is already
set, it is replaced.

aDataFile.setData( DATA )

Loading the ECD file is also straightforward.

aDataFile = ecell.ECDDataFile()
aDataFile.load( ’datafile.ecd’ )
DATA = aDataFile.getData()

The getData() method extracts the data from the ECDDataFile object as an array.

ECD header information

In addition to the data itself, an ECD file can hold some information in its header.

• Data name

The name of data. Setting a FullPN may be a good idea. Use setDataName(
name ) and getDataName() methods to set and get this field.

• Label

This field is used to name axes of the data. Use setLabel( labels ) and getLabel()
methods. These methods takes and returns a Python tuple, and stored in the
file as a space-separated list. The default value of this field is: ( ’t’, ’value’,
’avg’, ’min’, ’max’ ).

• Note

This is a free-format field. This can be a multi-line or a single-line string. Use
setNote( note ) and getNote().

The header information is stored in the file like this.
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#DATA:
#SIZE: 5 1010
#LABEL: t value avg min max
#NOTE:
#
#----------------------
0 0.1 0.1 0.1 0.1
...

Each line of the header is headed by a sharp (#) character. The ’#SIZE:’ line is
automatically set when saved to show size of the data. This field is ignored in loading.
The header ends with ’#----...’.

Using ECD outside E-Cell SE

For most cases Numeric Python will offer any necessary functionality for scientific data
processing. However, using some external software can enhance the usability.

ECD files can be used as input to any software which supports white space-separated
text format, and treats lines with heading sharps (#) as comments.

GNU gnuplot is a scientific presentation-quality plotting software with a sophisticated
interactive command system. To plot an ECD file from gnuplot, just use plot command.
For example, this draws a time-value 2D-graph:

gnuplot> plot ’datafile.ecd’ with lines

Use using modifier to specify which column to use for the plotting. The following
example makes a time-average 2D-plot.

gnuplot> plot ’datafile.ecd’ using 1:3 with lines

Another OpenSource software useful for data processing is GNU Octave. Loading an
ECD from Octave is also simplest.

octave:1> load datafile.ecd
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Now the data is stored in a matrix variable with the same name as the file without the
extension (datafile).

octave:2> mean(datafile)
ans =

5.0663 51.7158 51.7158 51.2396 52.2386

Binary format

Currently loading and saving of the binary file format is not supported. However,
Numeric Python has an efficient, platform-dependent way of exporting and importing
array data. See the Numeric Python manual.

Manipulating Model Files

This section describes how to create, modify, and read EML files with the EML module
of the E-Cell Python library.

Importing EML module

To import the EML module, just import ecell module.

import ecell

And ecell.Eml class is made available.

Other Methods

Getting version numbers

getLibECSVersion() method of ecell.ecs module gives the version of the C++ back-
end library (libecs) as a string. getLibECSVersionInfo() method of the module gives
the version as a Python tuple. The tuple contains three numbers in this order: (
MAJOR VERSION, MINOR VERSION, MICRO VERSION )
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ecell3-session>>> import ecell
ecell3-session>>> ecell.ecs.getLibECSVersion()
’3.2.0’
ecell3-session>>> ecell.ecs.getLibECSVersionInfo()
(3, 2, 0)

DM loading-related methods

The search path of DM files can be specified and retrieved by using setDMSearchPath()
and getDMSearchPath() methods. These methods gets and returns a colon (:) sepa-
rated list of directory names. The search path can also be specified by using ECELL3 DM PATH
environment variable. See the previous section for more about DMsearch path.

ecell3-session>>> import ecell
ecell3-session>>> ecell.ecs.setDMSearchPath( ’~/dm:~/test/dm’ )
ecell3-session>>> ecell.ecs.getDMSearchPath()
’~/dm:~/test/dm’

A list of built-in and already loaded DM classes can be gotten with getDMInfo() method
of ecell.ecs.Simulator class. The Simulator instance is available to Session as
theSimulator variable. The method returns a nested Python tuple in the form of ( (
TYPE1, CLASSNAME1, PATH1 ), ( TYPE2, CLASSNAME2, PATH2 ), ... ). TYPE
is one of ’Process’, ’Variable’, ’System’, or ’Stepper’. CLASSNAME is the class
name of the DM. PATH is the directory from which the DM is loaded. PATH is an
empty string (’’) if it is a built-in class.

ecell3-session>>> theSimulator.getDMInfo()
((’Process’, ’GillespieProcess’, ’/usr/lib/ecell/3.2/GillespieProcess.so’),
(’Stepper’, ’DiscreteTimeStepper’, ’’),
(’Stepper’, ’NRStepper’, ’/usr/lib/ecell/3.2/NRStepper.so’), ... )

Advanced Topics

How ecell3-session runs

ecell3-session command runs on ecell3-python interpreter command. ecell3-python
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command is a thin wrapper to the Python interpreter. ecell3-python command sim-
ply invokes a Python interpreter command specified at compile time. Before executing
Python, ecell3-python sets some environment variables to ensure that it can find nec-
essary E-Cell Python extension modules and the Standard DM Library. After process-
ing the commandline options, ecell3-session command creates an ecell.ecs.Simulator
object, and then instantiate a ecell.Session object for the simulator object.

Thus basically ecell3-python is just a Python interpreter, and frontend components
of E-Cell SE run on this command. To use the E-Cell Python Library from ecell3-
python command, use

import ecell

statement from the prompt:

$ ecell3-python
Python 2.2.2 (#1, Feb 24 2003, 19:13:11)
[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import ecell
>>>

or, (on UNIX-like systems) execute a file starting with:

#!/usr/bin/env ecell3-python
import ecell
[...]

Getting information about execution environment

To get the current configuration of ecell3-python command, invoke ecell3-python
command with a -h option. This will print values of some variables as well as usage of
the command.

$ ecell3-python -h
[...]

Configurations:

174



A.2. SCRIPTING A SIMULATION SESSION

PACKAGE = ecell
VERSION = 3.2.0
PYTHON = /usr/bin/python
PYTHONPATH = /usr/lib/python2.2/site-packages:
DEBUGGER = gdb
LD_LIBRARY_PATH = /usr/lib:
prefix = /usr
pythondir = /usr/lib/python2.2/site-packages
ECELL3_DM_PATH =

[...]

The ’PYTHON =’ line gives the path of the Python interpreter to be used.

Debugging

To invoke ecell3-python command in debugging mode, set ECELL DEBUG environment
variable. This runs the command on a debugger software. If found, GNU gdb is used
as the debugger. ECELL DEBUG can be used for any commands which run on ecell3-
python, including ecell3-session and gecell. For example, to run ecell3-session in
debug mode on the shell prompt:

$ ECELL_DEBUG=1 ecell3-session -f foo.eml
gdb --command=/tmp/ecell3.0mlQyE /usr/bin/python
GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)
Copyright 2003 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux-gnu"...
[New Thread 1074178112 (LWP 7327)]
ecell3-session [ E-Cell SE Version 3.2.0, on Python Version 2.2.2 ]
Copyright (C) 1996-2003 Keio University.
Send feedback to Kouichi Takahashi <shafi@e-cell.org>
<foo.eml, t=0>>> CtrlC
Program received signal SIGINT, Interrupt.
[Switching to Thread 1074178112 (LWP 7327)]
0xffffe002 in ?? ()
(gdb)
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It automatically runs the program with the commandline options with ’–command=’
option of gdb. The gdb prompt appears when the program crashes or interrupted by
the user by pressing Ctrl+C.

ECELL DEBUG runs gdb, which is operates at the level of C++ code. For debugging of
Python layer scripts, see Python Library Reference Manual for Python Debugger.

Profiling

It is possible to run ecell3-python command in profiling mode, if the operating sys-
tem has GNU sprof command, and its C library supports LD PROFILE environmental
variable. Currently it only supports per-shared object profiling. (See GNU C Library
Reference Manual)

To run ecell3-python in profiling mode, set ECELL PROFILE environment variable to
SONAME of the shared object. SONAME of a shared object file can be found by using
objdump command, with, for example, -p option.

For example, the following commandline takes a performance profile of Libecs:

$ ECELL_PROFILE=libecs.so.2 ecell3-session [...]

After running, it creates a profiling data file with a filename SONAME.profile in the
current directory. In this case, it is libecs.so.2.profile. The binary profiling data
can be converted to a text format by using sprof command. For example:

$ sprof -p libecs.so.2 libecs.so.2.profile
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Appendix B

History of E-Cell System

In the spring of 1996, a group project on molecular biology of Mycoplasma genitalium

driven mainly by undergraduate students, initially called ’the Mycoplasma project’,

had started in Laboratory for Bioinformatics, Keio University SFC (Shonan-Fujisawa

campus). In the October of that year, the head of the laboratory, Dr. Masaru Tomita,

recruited several undergraduate and graduate students in his lab, including Takahashi,

a junior at that time, for the development of software that can graphically represent

dynamic changes in activities of genes. Those students worked in a competitive way

with completely different approaches, and on November 15th, Takahashi gave a pre-

sentation in which he proposed (1) the project to focus on the kinetic dynamics of

metabolic pathways and the control of enzyme productions through the expressions of

genes, and (2) development of a generic software system based on object-orientation in

C++ language. The software was initially named ECL (Electronic Cell Laboratory),

and was later given the current name ’E-Cell System’, or ’Electronic Cell System’, by

Kenta Hashimoto, a senior in the lab. In December 29th, Takahashi made an internal

release of an alpha version (version 0.0-pre), of the software to lab members. The first

user of E-Cell System, who had been testing the software from the ’pre-alpha’ days, was
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Riow Matsushima, a junior at the time. This 3,500-line C++ piece of software had a

minimum set of functionalities necessary to model and simulate a system of enzymatic

reactions in a fully object-oriented way.

The object-model of this version defined two fundamental classes called primitives,

’Substance’ and ’Reactor’ for representations of molecular species and reactions, respec-

tively, and was called the ’Substance-Reactor’ model. By the end of the March, 1997,

this object-model had given another primitive class called ’System’, to model physi-

cal and logical (or functional) compartments in the cell. Hashimoto and Thomas S.

Shimizu, a master student, contributed the discussion about this ’Structured Substance-

Reactor’ object model. Hashimoto also created a class of Reactor which calculates a

chemical equilibrium. By the summer of 1997, Hashimoto participated in the develop-

ment of a set of classes for simulation of gene expressions, and Yasuhiro Asakawa, a

master student, and Katsuyuki Yugi, a junior in that year, developed a GUI component

called ’GeneMapWindow’ to graphically represent activities and amounts of products

(mRNA molecules) of many genes.

In August and September of 1997, the software had been used in a collaborative project

between Keio and TIGR (The Institute for Genomic Research), which aimed at in

silico reconstruction of a virtual hypothetical cell with 127 genes based on Mycoplasma

genitalium, which can self-sustain by producing energy from glucose with enzymes

created from those genes. In addition to Dr. Tomita, Hashimoto, Shimizu, Takahashi,

and Yugi, four more students, Yuri Matsuzaki, Fumihiko Miyoshi, Kanako Saito, and

Sakura Tanida participated in this ’camp’ held at an apartment in Baltimore, MD, USA,

and Dr. C. Hutchson and Dr. J. C. Ventor of TIGR co-authored papers published later.

The version of the software used in this camp was further developed to become the

version ’1.0beta’ of the software with helps from many contributors, and released under

E-Cell Beta-testing License in March 2nd, 2000. On October 13th, 2000, E-Cell 1 had
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been accepted by the Bioinformatics.org as an OpenSource project under the terms of

GPL (GNU General Public License).

In 2000, development projects of two other versions of E-Cell System, E-Cell 2 and

E-Cell 3, started. E-Cell 2, developed by Naota Ishikawa, is a Windows port of E-Cell 1

which runs only on Linux operating system. E-Cell 3, initially started its development

on Bioinformatics.org and later moved to Sourceforge.net in early 2003, is a complete

reconstruction of E-Cell 1. E-Cell 3 can be viewed as an object-oriented computation

platform on which any types of simulation algorithms can be used in any combination.

In E-Cell 3, the ’Substance-Reactor’ model of E-Cell 1 has been renamed to ’Variable-

Process’ model for further flexibility in modeling. Unlike E-Cell 1, it is possible to create

’wrappers’, or interface layers, of its C++ API. A wrapper for the Python language has

been developed, allowing development of frontend software in the productive scripting

language. In addition to a GUI simulation session monitor component and a model

editor, a distributed computation framework called E-Cell SessionManager is under

development.
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