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This paper critically examines the analysis conducted by MauBner et al. on Al analysis, particularly their
interpretation of feature importances derived from various machine learning models using SHAP (SHapley Ad-
ditive exPlanations). Although SHAP aids in interpretability, it is subject to model-specific biases that can
misrepresent relationships between variables. The paper emphasizes the lack of ground truth values in feature
importance assessments and calls for careful consideration of statistical methodologies, including robust
nonparametric approaches. By advocating for the use of Spearman’s correlation with p-values and Kendall’s tau

with p-values, this work aims to strengthen the integrity of findings in machine learning studies, ensuring that
conclusions drawn are reliable and actionable.

MauSBner et al. conducted a legal analysis of the EU Artificial Intel-
ligence Act and the Ethics Guidelines for Trustworthy Al (Maufner et al.,
2025). They showcased the concept of explainable AI through various
machine learning models, including Linear Least Squares Regression
(LS), Decision Tree Regression (DT), K-Nearest Neighbors Regression
(KNN), Long Short-Term Memory (LSTM), and Random Forest Regres-
sion (RF). Their findings revealed that each model with SHAP produced
unique feature importances (MaufBner, 2025).

This paper recognizes the thorough legal assessment of the EU
Artificial Intelligence Act and the Ethics Guidelines for Trustworthy AI
conducted by MauBiner et al. However, it raises significant concerns
about their interpretation of feature importances derived from machine
learning models using SHAP (SHapley Additive exPlanations). The
model-specific nature of these importance metrics can lead to
misleading or erroneous conclusions.

While the primary goal of machine learning is to generate accurate
predictions based on known ground truth values, the feature impor-
tances produced by these models lack corresponding ground truth ref-
erences, complicating their validation. Despite MauBner et al.’s claims of
“robustness” and “trust,” they did not adequately address the potential
distortions in feature importance assessments derived from SHAP. Their
findings indicated that different models yield varying feature impor-
tances, raising concerns that conclusions drawn from these metrics may
be fundamentally flawed. This paper questions why they did not
recognize the possibility of erroneous conclusions in their analyses.

Moreover, although Maufiner et al. are experts in water research,
they may not fully grasp the complexities of algorithmic calculations
and the biases that can arise from models, particularly regarding SHAP.
This suggests a potential disconnect between their domain expertise and
the underlying computational methodologies.

The issue of non-negligible bias in machine learning models is well-
established, with over 100 peer-reviewed articles documenting sub-
stantial biases in feature importance assessments (Fisher, 2019; Gian-
francesco, 2018; Strobl, 2007). There are several bias mitigation
methods, but none can completely eliminate biases (Altmann, 2010).
Although SHAP (SHapley Additive exPlanations) can be a valuable tool
for interpretability, it is critically dependent on the underlying model.
As a result, SHAP can inherit and even magnify biases embedded in that
model due to its design (i.e., explain=SHAP(model)) (Bilodeau, 2024;
Cross, 2024; Momenzadeh, 2022). This necessitates caution when
interpreting feature importances and drawing conclusions solely based
on SHAP outputs.

The universal challenge in feature importance estimation stems from
the fact that, unlike target prediction in supervised learning—where
well-defined ground truth values exist—there is no equivalent ground
truth for the contributions of individual features. Instead, methods such
as permutation importance, gradient-based approaches, and SHAP rely
solely on the trained model’s internal logic to infer feature significance.
Consequently, these methods inherently introduce biases because each
employs distinct assumptions and limitations that may skew the
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interpretation of a feature’s role in the model’s predictions (Bilodeau,
2024; Cross, 2024; Momenzadeh, 2022; Huang, 2024; Kumar, 2021;
Lones, 2024; Molnar, 2022). In this context, it is also noteworthy that
MauSfner et al. demonstrated that different models inherently generate
distinct feature importance estimates, further highlighting the vari-
ability introduced by methodological choices.

It is important to note that target prediction accuracy and feature
importance accuracy are two fundamentally different issues. While high
target prediction accuracy may indicate that a model performs well in its
primary prediction task, it does not guarantee that the derived feature
importances are reliable (Fisher, 2019; Lipton, 2018). Feature impor-
tance methods are not validated against an external benchmark for true
causality; rather, they remain subject to biases arising from the model’s
internal structure and the peculiarities of the training data.

Evidence from >100 peer-reviewed studies indicates that significant
biases in feature importance estimates are prevalent across a wide range
of fields. These biases can result from several factors, including imbal-
ances or peculiarities in the training data, multicollinearity among fea-
tures, and complex interactions that are not sufficiently disentangled by
conventional feature importance methods. Even when water demand
prediction models are built on high-quality data—such as measurements
from calibrated flow sensors—the absence of an independently vali-
dated “true” importance measure remains an inherent limitation. This
observation implies that while factors like dataset size and measurement
precision may influence the magnitude of bias, they do not resolve the
fundamental challenge of accurately estimating feature contributions
without an external standard.

To illustrate, consider a water demand forecasting model that uses
sensor data from flow meters together with environmental variables,
such as temperature and precipitation. If subtle measurement errors or
unaccounted confounders cause the model to overemphasize the sig-
nificance of temperature, then techniques like SHAP—which depend on
the model’s internally derived relationships—will reflect and potentially
amplify this bias. Such distortions can mislead decision-making by
causing an over-reliance on temperature forecasts while undervaluing
other critical variables, such as occupancy or economic activity. This
example, analogous to documented challenges in medical or health-
related applications, underscores that the theoretical underpinnings
governing biases in feature importance estimation remain consistent
across diverse data domains.

This paper advocates for the adoption of bias-free, robust statistical
methods, such as Spearman’s correlation (Eden, 2022; Yu, 2024) and
Kendall’s tau (Ouachene, 2024; Wang, 2021), both of which provide
p-values and are effective in handling nonlinear relationships in a
nonparametric context. Maufiner et al. should reevaluate their findings
using these robust methods to enhance the integrity and reliability of
their outcomes.
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