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今日の内容
• 微分法の応用に関して解説する．

1. 接線と法線の方程式

2. 極値問題，凹凸，2次導関数

3. ロピタルの定理
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関数の増加・減少
• 関数 𝑓 𝑥 が 𝑎 で微分可能とは，点 𝑎, 𝑓 𝑎 の近傍で 𝑓 𝑥 のグ
ラフが直線で近似可能であること意味する．
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• その直線の傾きは微分係数 𝑓′ 𝑎 で与えられる．

• 関数のグラフが直線であれば，関数の増加・減少はその傾きの正
負で簡単に判定できる．

• そのため，関数を微分することにより，その関数がどの範囲で増
加・減少しているかを解析することが可能になる．

𝑎

𝑓 𝑎

𝑦 = 𝑓 𝑥



接線
定義7.1

• 関数 𝑓 𝑥 が 𝑎 で微分可能であるとする．
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• 点 𝑎, 𝑓 𝑎 を通る，傾き 𝑓′ 𝑎 の直線を，𝑦 = 𝑓 𝑥 のグラフの

𝑎, 𝑓 𝑎 における接線という．

• 具体的に式で書くと
𝑦 − 𝑓 𝑎 = 𝑓′ 𝑎 𝑥 − 𝑎

• 式を整理して
𝑦 = 𝑓′ 𝑎 𝑥 + 𝑓 𝑎 − 𝑓′ 𝑎 𝑎

と書くこともできる．

𝑎

𝑓 𝑎

𝑦 = 𝑓 𝑥

𝑦 = 𝑓′ 𝑎 𝑥 + 𝑓 𝑎 − 𝑓′ 𝑎 𝑎



接線（例）
例7.2

• 関数 𝑓 𝑥 = 𝑥2 − 𝑥 − 3のグラフの 2, 𝑓 2 における接線を求め

る．
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• 導関数は 𝑓′ 𝑥 = 2𝑥 − 1 である．

• 𝑓 2 = −1, 𝑓′ 2 = 3 より，接線の方程式は

𝑦 − −1 = 3 𝑥 − 2

• つまり

𝑦 = 3𝑥 − 7



法線
定義7.3

• 関数 𝑓 𝑥 が 𝑎 で微分可能であるとする．
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• 点 𝑎, 𝑓 𝑎 において，𝑦 = 𝑓 𝑥 のグラフの接線と直交する直線を

法線という．

• 具体的に式で書くと

𝑦 − 𝑓 𝑎 = −
1

𝑓′ 𝑎
𝑥 − 𝑎

• 式を整理して

𝑦 = −
1

𝑓′ 𝑎
𝑥 + 𝑓 𝑎 +

𝑎

𝑓′ 𝑎

と書くこともできる．

• 傾きが 𝑠 と 𝑡の直線が直交する条件
は 𝑠 𝑡 = −1 である．（非自明）

𝑎

𝑓 𝑎

𝑦 = 𝑓 𝑥

𝑦 = 𝑓′ 𝑎 𝑥 + 𝑓 𝑎 − 𝑓′ 𝑎 𝑎

𝑦 = −
1

𝑓′ 𝑎
𝑥 + 𝑓 𝑎 +

𝑎

𝑓′ 𝑎



法線（例）
例7.4

• 関数 𝑓 𝑥 = 𝑥2 − 𝑥 − 3のグラフの 2, 𝑓 2 における法線を求め

る．
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• 導関数は 𝑓′ 𝑥 = 2𝑥 − 1 である．

• 𝑓 2 = −1, 𝑓′ 2 = 3 より，法線の方程式は

𝑦 − −1 = −
1

3
𝑥 − 2

• つまり

𝑦 = −
1

3
𝑥 −

1

3



接線・法線（問題）
問題7.5

• 関数 𝑓 𝑥 = 𝑥3 − 𝑥2 − 3のグラフの 2, 𝑓 2 における接線と法

線を求めよ．
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単調増加・単調減少
定義7.6

• 関数 𝑓 𝑥 は
𝑥1 < 𝑥2 ⟹ 𝑓 𝑥1 ≤ 𝑓 𝑥2

を満たすとき，単調増加と呼ばれ，
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𝑥1 < 𝑥2 ⟹ 𝑓 𝑥1 ≥ 𝑓 𝑥2

を満たすとき，単調減少と呼ばれる．

• ≤ を < に置き換えた条件を満たすとき，狭義単調増加と呼ばれ，

• ≥ を > に置き換えた条件を満たすとき，狭義単調減少と呼ばれる．



単調増加・単調減少
• 関数の増減と微分に関して，次の関係は基本的である．
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定理7.7

• 関数 𝑓 𝑥 が微分可能であるとする．

1. 𝑓′ 𝑥 ≥ 0 ならば 𝑓(𝑥)は単調増加．

2. 𝑓′ 𝑥 > 0 ならば 𝑓(𝑥)は狭義単調増加．

3. 𝑓′ 𝑥 ≤ 0 ならば 𝑓(𝑥)は単調減少．

4. 𝑓′ 𝑥 < 0 ならば 𝑓(𝑥)は狭義単調減少．

5. 𝑓′ 𝑥 = 0 ならば 𝑓(𝑥)は定数．

• 微分係数が接線の傾きを与えていることを思い出せば，直感的に
理解しやすい．

• 証明には後で学ぶ平均値の定理が必要になる．



極大・極小
定義7.8

• 関数 𝑓 𝑥 は 𝑎 の近傍（𝑎 を含む小さな開区間）において

1. 𝑥 < 𝑎 で単調増加，𝑥 > 𝑎 で単調減少となるとき，𝑓 𝑥 は 𝑎 で極
大であるといい，𝑓 𝑎 を極大値という．
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2. 𝑥 < 𝑎 で単調減少，𝑥 > 𝑎 で単調増加となるとき，𝑓 𝑥 は 𝑎 で極
小であるといい，𝑓 𝑎 を極小値という．

• 極値：極大値と極小値，極値問題：極値を求める問題

• 関数の最大値と最小値は，それぞれ極大値と極小値．

𝑥

𝑦

𝑦 = 𝑓 𝑥極大

極小

極大



ワイエルシュトラスの最大値の定理
定理7.9（ワイエルシュトラスの最大値の定理）

• 関数 𝑓 𝑥 が 𝑎, 𝑏 で連続であるとき，𝑐, 𝑑 ∈ 𝑎, 𝑏 が存在して，任
意の 𝑥 ∈ 𝑎, 𝑏 に対して

𝑓 𝑥 ≤ 𝑓(𝑐),    𝑓 𝑑 ≤ 𝑓 𝑥
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• つまり，𝑓 𝑥 は 𝑎, 𝑏 において，𝑐 で最大値 𝑓 𝑐 ，𝑑 で最小値
𝑓 𝑑 をとる．

• この定理は関数が具体的にどこで最大値と最小値をとるかについ
てまでは教えてくれない．

• 連続性を仮定するのはなぜであろうか?



発展：最大値の定理（証明）
• 最大値が存在することが証明できれば，−𝑓(𝑥) を考えることで最小値も存在することが分か
る．
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• まず，𝐽 = 𝑓 𝑥 | 𝑥 ∈ 𝑎, 𝑏 が上に有界であることを示す．

• 背理法により示すため，𝐽が上に有界でないと仮定すると，任意の 𝑛 ∈ ℕ に対して，𝑓 𝑥𝑛 > 𝑛 となる
𝑥𝑛 ∈ 𝑎, 𝑏 が存在する．

• 数列 𝑥𝑛 は上に有界（𝑥𝑛 ≤ 𝑏）なので，定理3.29のボルツァーノ-ワイエルシュトラスの定理より，収束
する部分列 𝑥𝑛𝑘 を持つ．

• lim
𝑘→∞

𝑥𝑛𝑘 = 𝑐 とすると， 𝑐 ∈ 𝑎, 𝑏 であり， 𝑓 の連続性から， lim
𝑘→∞

𝑓 𝑥𝑛𝑘 = 𝑓(𝑐)

• しかし，𝑓 𝑥𝑛𝑘 > 𝑛𝑘 であるから， lim
𝑘→∞

𝑓 𝑥𝑛𝑘 = ∞ であるはずで，これは矛盾する．

• したがって，背理法により 𝐽 は上に有界である．

• 実数の性質より，𝐽 = 𝑓 𝑥 | 𝑥 ∈ 𝑎, 𝑏 が上に有界であるから，上限 𝑀 = sup 𝐽 が存在する．
これが最大値であること（𝑀 ∈ 𝐽）を示せばよい．

• 𝑀が 𝐽 の上限であることから，任意の 𝑛 ∈ ℕに対して，𝑀 −
1

𝑛
< 𝑓 𝑥𝑛 ≤ 𝑀 となる 𝑓 𝑥𝑛 ∈ 𝐽 が存在

する．𝑥𝑛 ∈ 𝑎, 𝑏 である．

• したがって， lim
𝑛→∞

𝑀 −
1

𝑛
≤ lim

𝑛→∞
𝑓 𝑥𝑛 ≤ 𝑀 となり， lim

𝑛→∞
𝑀 −

1

𝑛
= 𝑀 であるから， lim

𝑛→∞
𝑓 𝑥𝑛 = 𝑀

• ふたたび定理3.29のボルツァーノ-ワイエルシュトラスの定理より， 𝑥𝑛 は上に有界（𝑥𝑛 ≤ 𝑏）なので，
収束する部分列 𝑥𝑛𝑘 を持つ．

• lim
𝑘→∞

𝑥𝑛𝑘 = 𝑐 とすると，𝑐 ∈ 𝑎, 𝑏 であり，𝑓の連続性から， lim
𝑘→∞

𝑓 𝑥𝑛𝑘 = 𝑓(𝑐)

• 数列 𝑓 𝑥𝑛 は 𝑀 に収束するため，その部分数列の 𝑓 𝑥𝑛𝑘 も 𝑀 に収束する．

• したがって，𝑀 = 𝑓 𝑐 ∈ 𝐽 であり，𝑓 𝑥 は 𝑎, 𝑏 において最大値𝑀 をとる．（QED)



停留点
定義7.10

• 関数 𝑓 𝑥 が微分可能であるとき，𝑓′ 𝑎 = 0 となる 𝑎 を 𝑓 𝑥 の停
留点という．
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• 𝑓 𝑥 が 𝑎 で極大・極小であれば 𝑎 は 𝑓 𝑥 の停留点である．

• 極大：𝑓′ 𝑥 の符号が 𝑎 で正から負に変化

• 極小：𝑓′ 𝑥 の符号が 𝑎 で負から正に変化

• 停留点は必ずしも極大・極小とは限らない．

• 実際，𝑓 𝑥 = 𝑥3 の停留点 𝑎 = 0は極大でも極小でもない．

• 極値問題では，導関数を計算して停留点を求め，それが極大・極小
を与えているか確認する，という方法をとる．



増減表
• 関数の増減と極値に関してまとめた表を増減表という．
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例7.11

• 𝑓 𝑥 = 2𝑥2 + 8𝑥 + 13に関して，

𝑓′ 𝑥 = 4𝑥 + 8 = 4(𝑥 + 2)

• 𝑓′ 𝑥 < 0 ⟺ 𝑥 < −2

• 𝑓′ 𝑥 = 0 ⟺ 𝑥 = −2

• 𝑓′ 𝑥 > 0 ⟺ 𝑥 > −2

• 増減表

𝑥 ⋯ −2 ⋯

𝑓′ 𝑥 − 0 +

𝑓 𝑥 ↘ 5 ↗

導関数は



増減表（問題）
問題7.12

• 𝑓 𝑥 = 𝑥3 + 3𝑥2 − 9𝑥 + 6に関して，増減表を書きなさい．
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• 増減表

𝑥

𝑓′ 𝑥

𝑓 𝑥



関数の凹凸
定義7.13

• 開区間 𝑎, 𝑏 において，関数 𝑓 𝑥 が

1.下に凸：任意の 𝑥1, 𝑥2 ∈ 𝑎, 𝑏 と 0 ≤ 𝜆 ≤ 1に対して
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𝜆 𝑓 𝑥1 + 1 − 𝜆 𝑓 𝑥2 ≥ 𝑓 𝜆 𝑥1 + 1 − 𝜆 𝑥2

1.上に凸：任意の 𝑥1, 𝑥2 ∈ 𝑎, 𝑏 と 0 ≤ 𝜆 ≤ 1に対して

𝜆 𝑓 𝑥1 + 1 − 𝜆 𝑓 𝑥2 ≤ 𝑓 𝜆 𝑥1 + 1 − 𝜆 𝑥2

𝑥1 𝑥2

𝜆 𝑥1 + 1 − 𝜆 𝑥2

𝜆 1 − 𝜆

下に凸

𝑥1 𝑥2

𝜆 𝑥1 + 1 − 𝜆 𝑥2

𝜆 1 − 𝜆

上に凸

• 点 𝑝, 𝑞 に対して，𝜆 𝑝 + 1 − 𝜆 𝑞 は区間 𝑝, 𝑞 を 𝜆: (1 − 𝜆)に内分する点．



変曲点
定義7.14

• その点の左右で上に凸と下に凸が切り替わるような点を変曲点とい
う．
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𝑥

𝑦 𝑦 = 𝑓 𝑥

変曲点 変曲点

上に凸 上に凸下に凸



2次導関数
• 関数の増減は微分することで判定できた．

• 次に関数の凹凸は2回微分することで判定できることを説明する．
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定義7.15

• 関数 𝑓 𝑥 の導関数 𝑓′ 𝑥 も微分可能であるとき，𝑓 𝑥 は2回微分
可能であるという．

• 𝑓′ 𝑥 の導関数を 𝑓′′ 𝑥 と書き，𝑓 𝑥 の2次導関数と呼ぶ．

• 𝑓 𝑥 が位置を表すとき

• 𝑓′ 𝑥 は速度（＝位置の変化率），

• 𝑓′′ 𝑥 は加速度（＝速度の変化率）

を表す．



2次導関数
定理7.16

• 𝑓 𝑥 は2回微分可能とする．

1. 𝑓′′ 𝑥 > 0 ならば 𝑓 𝑥 は下に凸．
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2. 𝑓′′ 𝑥 < 0 ならば 𝑓 𝑥 は上に凸．

3. 変曲点 𝑎 は2回微分の符号が変化する点．特に，𝑓′′ 𝑎 = 0

• 𝑓′′ 𝑥 > 0は接線の傾きが増加すること，𝑓′′ 𝑥 < 0 は接線の傾
きが減少することを意味する．

𝑥

𝑦 𝑦 = 𝑓 𝑥

変曲点 変曲点



正規分布の変曲点
例7.17

• 正数 𝑎 > 0に関して，𝑓 𝑥 = 𝑒−𝑎𝑥
2
の変曲点を求める．
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𝑓′ 𝑥 = −2 𝑎 𝑥 𝑒−𝑎𝑥
2

𝑓′′ 𝑥 = −2 𝑎 𝑒−𝑎𝑥
2
+ −2 𝑎 𝑥 2𝑒−𝑎𝑥

2

= 2 𝑎 𝑒−𝑎𝑥
2
2 𝑎 𝑥2 − 1

• これより，𝑥 = ±
1

2𝑎
が変曲点．

• 特に，𝑎 =
1

2𝜎2
とすると，𝑥 = ±𝜎 が変曲点．



発展：正規分布の変曲点
定理7.18

• 正規分布の確立密度関数 𝑓 𝑥 =
1

2𝜋𝜎
𝑒
−

𝑥−𝜇 2

2𝜎2 の変曲点は

𝑥 = 𝜇 ± 𝜎 ．
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• 𝜎 は正規分布の標準偏差と呼ばれる．



発展：中心極限定理
定理7.19

• 母集団の確率分布がどのようなものであっても，そこから十分
に大きな数の標本を抽出して平均を取ると、その分布は正規
分布に近づく．
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• 統計学の基本定理の一つ．

• ただし，分散が有限である必要がある．

平均

分散

平均

分散

平均

分散

平均

分散

母集団の分布

標本の平均の分布



2次導関数
• 停留点は極値とは限らなかったが，2次導関数を使うことで，極大・
極小についての判定が可能となる．
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定理7.20

• 𝑓 𝑥 は2回微分可能とする．

1. 𝑓′ 𝑎 = 0かつ 𝑓′′ 𝑎 > 0 ならば，𝑓 𝑥 は 𝑎 において極小．

2. 𝑓′ 𝑎 = 0かつ 𝑓′′ 𝑎 < 0 ならば，𝑓 𝑥 は 𝑎 において極大．

• 𝑓′ 𝑎 = 𝑓′′ 𝑎 = 0 である場合には，この定理からは何もわからな
い．

• 実際，𝑓 𝑥 = 𝑥3 に関して，𝑓′ 0 = 𝑓′′ 0 = 0 であり，𝑓 𝑥 は原
点 0において極値を取らない．



増減凹凸表
• 増減凹凸表：関数の増減，凹凸，極値に関してまとめた表

25

例7.21

• 𝑓 𝑥 = 𝑥3 + 3𝑥2 − 9𝑥 + 6に関して，

𝑓′ 𝑥 = 3𝑥2 + 6𝑥 − 9 = 3 𝑥 + 3 𝑥 − 1

𝑓′′ 𝑥 = 6𝑥 + 6 = 6(𝑥 + 1)

• これにより 𝑓 𝑥 の増減凹凸表は次で与えられる．

𝑥 ⋯ −3 ⋯ −1 ⋯ 1 ⋯

𝑓′ 𝑥 + 0 − − − 0 +

𝑓′′ 𝑥 − − − 0 + + +

𝑓 𝑥 33 17 1



増減凹凸表（問題）
問題7.22

• 𝑥 > 0に対して定義される関数 𝑓 𝑥 = 𝑥 log 𝑥 の増減凹凸表を作
り，𝑓 𝑥 のグラフを描け．
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𝑥

𝑓′ 𝑥

𝑓′′ 𝑥

𝑓 𝑥

増減凹凸表



最適化問題
例7.23

• 等周問題：周の長さが 𝑙 の長方形の中で面積を最大にするものは?
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• 面積 𝐴 𝑥 = 𝑥 𝑙/2 − 𝑥

𝐴′(𝑥) =
𝑙

2
− 2𝑥 𝐴′′ 𝑥 = −2

𝑙

2
− 𝑥

𝑥

𝑥0 𝑙/2𝑙/4

𝑙2/16 𝑦 = 𝐴 𝑥

𝑦



ロピタルの定理
• 微分は不定形の極限を計算する強力な手法を与える．
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定理7.24（ロピタルの定理）

• 関数 𝑓 𝑥 , 𝑔 𝑥 が 𝑎 を除く 𝑎 の近傍において微分可能であり，

lim
𝑥→𝑎

𝑓 𝑥 = lim
𝑥→𝑎

𝑔 𝑥 = 0

かつ，𝑔′ 𝑥 ≠ 0 とする．

• このとき，極限 lim
𝑥→𝑎

𝑓′ 𝑥

𝑔′ 𝑥
が存在するならば

lim
𝑥→𝑎

𝑓 𝑥

𝑔 𝑥
= lim

𝑥→𝑎

𝑓′ 𝑥

𝑔′ 𝑥

• ロピタルの定理は，𝑎 = ±∞や lim
𝑥→𝑎

𝑓 𝑥 = lim
𝑥→𝑎

𝑔 𝑥 = ±∞の場合

も成り立つ．

• 証明は次回行う．



ロピタルの定理（問題）
問題7.25

• 次の極限を計算せよ．

1. lim
𝑥→0

sin 𝑥

𝑥

2. lim
𝑥→1

log 𝑥

𝑥−1

3. lim
𝑥→∞

1010𝑥

𝑒𝑥

4. lim
𝑥→0

𝑥+1−1

𝑥

5. lim
𝑥→0

sin 𝑥−𝑥

𝑥3
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• ロピタルの定理を使う際には，仮定に注意すること．



まとめ
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