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今日の内容
• 前回に引き続いてテイラーの定理に関する話題を議論する．

1. テイラーの定理の証明

2. テイラー展開，解析的関数

3. 応用，オイラーの公式
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関数の多項式近似
• 微分とは，関数を1次多項式（関数）で近似した様子を記述するもの
で，導関数の情報から関数の増減の解析が可能になった．
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• 導関数がさらに微分可能ならば，2回微分することにより凹凸を知る
ことができた．これは関数を2次多項式で近似することに相当する．

• 関数がさらに微分可能な場合には，3回微分，4回微分，… を考え
ることにより，与えられた関数の3次多項式，4次多項式，… での
近似を考察することができる．

• 一般の関数（三角関数，指数関数，対数関数）などは難しいが，多
項式関数は比較的簡単である．



テイラーの定理
定理9.1（テイラーの定理）

• 開区間 𝐼 で定義された関数 𝑓 𝑥 が 𝑛回微分可能であるとき，任
意の 𝑎 ∈ 𝐼 に対して
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𝑓 𝑥 = ෍

𝑘=0

𝑛−1
𝑓 𝑘 𝑎

𝑘!
𝑥 − 𝑎 𝑘 +

𝑓 𝑛 𝑐

𝑛!
𝑥 − 𝑎 𝑛

= 𝑓 𝑎 + 𝑓′ 𝑎 𝑥 − 𝑎 +
𝑓 2 𝑎

2!
𝑥 − 𝑎 2 +

𝑓 3 𝑎

3!
𝑥 − 𝑎 3

+⋯+
𝑓 𝑛−1 𝑎

𝑛 − 1 !
𝑥 − 𝑎 𝑛−1 +

𝑓 𝑛 𝑐

𝑛!
𝑥 − 𝑎 𝑛

を満たす 𝑐 ∈ 𝑎, 𝑥 が存在する．（𝑎 < 𝑥 の場合）

• 上記の表示を有限テイラー展開という．



マクローリンの定理
• 特に 𝑎 = 0の場合にはマクローリンの定理と呼ばれる．
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定理9.2（マクローリンの定理）

• 0 を含む開区間 𝐼 で定義された関数 𝑓 𝑥 が 𝑛回微分可能である
とき

𝑓 𝑥 = ෍

𝑘=0

𝑛−1
𝑓 𝑘 0

𝑘!
𝑥𝑘 +

𝑓 𝑛 𝜃𝑥

𝑛!
𝑥𝑛

= 𝑓 0 + 𝑓′ 0 𝑥 +
𝑓 2 0

2!
𝑥2 +

𝑓 3 0

3!
𝑥3

+⋯+
𝑓 𝑛−1 0

𝑛 − 1 !
𝑥𝑛−1 +

𝑓 𝑛 𝜃𝑥

𝑛!
𝑥𝑛

を満たす 𝜃 ∈ 0,1 が存在する．（0 < 𝑥 の場合）

• 上記の表示を有限マクローリン展開という．



テイラーの定理（意味）
• テイラーの定理における
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𝑃𝑛−1 𝑥 = ෍

𝑘=0

𝑛−1
𝑓 𝑘 𝑎

𝑘!
𝑥 − 𝑎 𝑘

𝑅𝑛 𝑥 =
𝑓 𝑛 𝑐

𝑛!
𝑥 − 𝑎 𝑛

はそれぞれ（𝑛 − 1次の）テイラー多項式と剰余項と呼ばれる．

• 微分の観点からは，𝑓 𝑥 と 𝑃𝑛−1 𝑥 は似ている．

𝑓 𝑎 = 𝑃𝑛−1 𝑎 , 𝑓′ 𝑎 = 𝑃𝑛−1
′ 𝑎 ,… , 𝑓 𝑛−1 𝑎 = 𝑃𝑛−1

𝑛−1
𝑎

実際，𝑓 𝑥 が 𝑛次多項式であれば，𝑓 𝑥 = 𝑃𝑛 𝑥 であった．

• テイラーの定理は 𝑓 𝑥 と 𝑃𝑛−1 𝑥 の誤差を 𝑓 𝑥 の 𝑛次微分係
数を用いて評価できることを主張している．



有限マクローリン展開（例）
例9.3

• 𝑓 𝑥 = 𝑒𝑥 の有限マクローリン展開を求める．
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𝑓′ 𝑥 = 𝑓 2 𝑥 = 𝑓 3 𝑥 = 𝑓 4 𝑥 = 𝑒𝑥

であるから

𝑓′ 0 = 𝑓 2 0 = 𝑓 3 0 = 𝑓 4 0 = 𝑒0 = 1

したがって

𝑒𝑥 = 𝑃5 𝑥 + 𝑅6 𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+
𝑥4

4!
+
𝑥5

5!
+
𝑒𝜃𝑥

6!
𝑥6

• これを使って，𝑓 1 = 𝑒の近似値を求めると

𝑃5 1 = 1 + 1 +
1

2!
+
1

3!
+
1

4!
+
1

5!
=
163

60
= 2.71666…

であるが，マクローリンの定理より誤差は

𝑒 − 𝑃5 1 =
𝑒𝜃

6!
<

𝑒

6!
<

3

6!
=

1

240
= 0.004166…



コーシーの平均値の定理
• コーシーの平均値の定理を用いて，テイラーの定理を証明する．
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𝑓 𝑏 − 𝑓 𝑎

𝑔 𝑏 − 𝑔 𝑎
=
𝑓′ 𝑐

𝑔′ 𝑐

となる 𝑐 ∈ 𝑎, 𝑏 が存在する．

• 直感的には，媒介変数 𝑡 ∈ 𝑎, 𝑏 を用いて 𝑥, 𝑦 = 𝑔 𝑡 , 𝑓 𝑡 の
軌跡を考えればよい．

𝑔 𝑎 , 𝑓 𝑎

𝑔 𝑏 , 𝑓 𝑏

𝑔′ 𝑐 , 𝑓′ 𝑐

定理9.4（コーシーの平均値の定理）

• 微分可能な関数 𝑓 𝑥 , 𝑔(𝑥)の定義域に 𝑎, 𝑏 が含まれ，𝑥 ∈ 𝑎, 𝑏
において 𝑔′ 𝑥 ≠ 0 であり，𝑔 𝑏 − 𝑔 𝑎 ≠ 0 であれば



テイラーの定理（証明）
• 関数
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𝐹 𝑥 = 𝑓 𝑥 −෍

𝑘=0

𝑛−1
𝑓 𝑘 𝑎

𝑘!
𝑥 − 𝑎 𝑘

= 𝑓 𝑥 − ൝𝑓 𝑎 + 𝑓′ 𝑎 𝑥 − 𝑎 +
𝑓 2 𝑎

2!
𝑥 − 𝑎 2

ቋ+⋯+
𝑓 𝑛−1 𝑎

𝑛 − 1 !
𝑥 − 𝑎 𝑛−1

を考え，これが剰余項
𝑓 𝑛 𝑐

𝑛!
𝑥 − 𝑎 𝑛 𝑎 < 𝑐 < 𝑥 の形に書けることを示

す．

• 簡単な計算で次のことが分かる．

• 𝐹 𝑎 = 𝐹′ 𝑎 = 𝐹′′ 𝑎 = ⋯ = 𝐹 𝑛−1 𝑎 = 0

• 𝐹 𝑛 𝑥 = 𝑓 𝑛 𝑥



テイラーの定理（証明）

• 𝐹′ 𝑥 と 𝐺′ 𝑥 = 𝑛 𝑥 − 𝑎 𝑛−1 に対して，コーシーの平均値の定理
を使うと
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𝐹 𝑥

𝐺 𝑥
=
𝐹 𝑥 − 𝐹 𝑎

𝐺 𝑥 − 𝐺 𝑎
=
𝐹′ 𝑥1
𝐺′ 𝑥1

となる 𝑎 < 𝑥1 < 𝑥 が存在する．

• 𝐹 𝑥 と 𝐺 𝑥 = 𝑥 − 𝑎 𝑛 に対して，コーシーの平均値の定理を使
うと

𝐹′ 𝑥1
𝐺′ 𝑥1

=
𝐹′ 𝑥1 − 𝐹′ 𝑎

𝐺′ 𝑥1 − 𝐺′ 𝑎
=
𝐹′′ 𝑥2
𝐺′′ 𝑥2

となる 𝑎 < 𝑥2 < 𝑥1 が存在する．

• これを繰り返す．



テイラーの定理（証明）
• まとめると
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𝐹 𝑥

𝐺 𝑥
=
𝐹′ 𝑥1
𝐺′ 𝑥1

=
𝐹′′ 𝑥2
𝐺′′ 𝑥2

= ⋯ =
𝐹 𝑛−1 𝑥𝑛−1

𝐺 𝑛−1 𝑥𝑛−1
=
𝐹 𝑛 𝑥𝑛

𝐺 𝑛 𝑥𝑛

となる 𝑎 < 𝑥𝑛 < 𝑥𝑛−1 < ⋯ < 𝑥1 < 𝑥 が存在する．

• これにより

𝐹 𝑥

𝑥 − 𝑎 𝑛
=
𝐹 𝑥

𝐺 𝑥
=
𝐹 𝑛 𝑥𝑛

𝐺 𝑛 𝑥𝑛
=
𝑓 𝑛 𝑥𝑛

𝑛!

なので，𝑐 = 𝑥𝑛 として

𝐹 𝑥 =
𝑓 𝑛 𝑐

𝑛!
𝑥 − 𝑎 𝑛

が示された．（QED)



テイラー展開
• 𝐶∞ 級の関数 𝑓 𝑥 に関して，剰余項
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𝑅𝑛 𝑥 =
𝑓 𝑛 𝑐

𝑛!
𝑥 − 𝑎 𝑛 → 0 𝑛 → ∞

が成立すれば，

𝑓 𝑥 = ෍

𝑘=0

∞
𝑓 𝑘 𝑎

𝑘!
𝑥 − 𝑎 𝑘

としての表現を持つ．

• 剰余項 𝑅𝑛 𝑥 に関する条件は，𝑥 が 𝑎 に十分近いときに満たされ
ることが多いが，この講義では深入りしない．（収束半径の議論が
必要．）

𝑓 𝑥 はベキ級数展開（単項式の無限和として表現）



テイラー展開
定義9.5

• 𝐶∞ 級の関数 𝑓 𝑥 に関して，剰余項が 𝑅𝑛 𝑥 → 0 𝑛 → ∞ となる
とき
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𝑓 𝑥 = ෍

𝑘=0

∞
𝑓 𝑘 𝑎

𝑘!
𝑥 − 𝑎 𝑘

= 𝑓 𝑎 + 𝑓′ 𝑎 𝑥 − 𝑎 +
𝑓 2 𝑎

2!
𝑥 − 𝑎 2 +

𝑓 3 𝑎

3!
𝑥 − 𝑎 3

+⋯+
𝑓 𝑛 𝑐

𝑛!
𝑥 − 𝑎 𝑛 +⋯

• この表示を 𝑓 𝑥 のテイラー展開と呼ぶ．

• 特に 𝑎 = 0のときは，マクローリン展開と呼ばれる．



マクローリン展開（例）
例9.6

• 𝑓 𝑥 = 𝑒𝑥 に関して，𝑓 𝑛 𝑥 = 𝑒𝑥 であるから，有限マクローリン展開は
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𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+ ⋯+

𝑥𝑛−1

𝑛 − 1 !
+
𝑒𝜃𝑥

𝑛!
𝑥𝑛

ただし 0 < 𝜃 < 1．

• 任意の 𝑥 に対して

𝑒𝜃𝑥

𝑛!
𝑥𝑛 → 0 𝑛 → ∞

であるから，𝑓 𝑥 = 𝑒𝑥 のマクローリン展開は

𝑒𝑥 = ෍

𝑘=0

∞
𝑥𝑘

𝑘!
= 1 + 𝑥 +

𝑥2

2!
+
𝑥3

3!
+ ⋯

• 簡単のため，0 < 𝑥 としたが，𝑥 < 0でも成り立つ．



マクローリン展開（例）
例9.7

• 𝑓 𝑥 = sin 𝑥 の有限マクローリン展開を求める．
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𝑓′ 𝑥 = cos 𝑥 , 𝑓 2 𝑥 = − sin 𝑥 , 𝑓 3 𝑥 = − cos 𝑥 , 𝑓 4 𝑥 = sin 𝑥

を周期4で繰り返すことから

𝑓 4𝑛 0 = 0, 𝑓 4𝑛+1 0 = 1, 𝑓 4𝑛+2 0 = 0, 𝑓 4𝑛+3 0 = −1

• したがって

sin 𝑥 = ෍

𝑘=0

𝑛−1

−1 𝑘
𝑥2𝑘+1

2𝑘 + 1 !
+ 𝑅 = 𝑥 −

𝑥3

3!
+
𝑥5

5!
− ⋯+

−1 𝑛−1

2𝑛 − 1 !
𝑥2𝑛−1 + 𝑅

• ただし，剰余項 𝑅 は 𝑅2𝑛 または 𝑅2𝑛+1 であり，ある 0 < 𝜃 < 1に関して

𝑅2𝑛 =
−1 𝑛 sin 𝜃𝑥

2𝑛 !
𝑥2𝑛 𝑅2𝑛+1 =

−1 𝑛 cos 𝜃𝑥

2𝑛 + 1 !
𝑥2𝑛+1

いずれの場合も 𝑅𝑁 ≤
𝑥𝑁

𝑁!
→ 0 𝑁 → ∞ であるから，𝑓 𝑥 = sin 𝑥 のマクローリン

展開は

sin 𝑥 = ෍

𝑘=0

∞

−1 𝑘
𝑥2𝑘+1

2𝑘 + 1 !
= 𝑥 −

𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+ ⋯



マクローリン展開（例）
例9.8

• 𝑓 𝑥 = cos 𝑥 の有限マクローリン展開も同様に求めることができる．
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𝑓′ 𝑥 = − sin 𝑥 , 𝑓 2 𝑥 = −cos 𝑥 , 𝑓 3 𝑥 = sin 𝑥 , 𝑓 4 𝑥 = cos 𝑥

を周期4で繰り返すことから

𝑓 4𝑛 0 = 1, 𝑓 4𝑛+1 0 = 0, 𝑓 4𝑛+2 0 = −1, 𝑓 4𝑛+3 0 = 0

• したがって

cos 𝑥 = ෍

𝑘=0

∞

−1 𝑘
𝑥2𝑘

2𝑘 !
= 1 −

𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+ ⋯

• これらのマクローリン展開からも， sin 𝑥 ′ = cos 𝑥, cos 𝑥 ′ = −sin 𝑥 が成
り立っていることが分かる．（個別微分）

sin 𝑥 = ෍

𝑘=0

∞

−1 𝑘
𝑥2𝑘+1

2𝑘 + 1 !
= 𝑥 −

𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+ ⋯



三角関数と弧度法
• 解析学において，三角関数を弧度法で考えることは重要である．
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• 実際，度数法の世界では三角関数の基本的な公式は複雑になる

（1° =
𝜋

180
rad）．

1. lim
𝑥→0

sin 𝑥

𝑥
=

𝜋

180

2. sin 𝑥 ′ =
𝜋

180
cos 𝑥, cos 𝑥 ′ = −

𝜋

180
sin 𝑥

3. sin 𝑥 =
𝜋

180
𝑥 −

𝜋3

1803
𝑥3

3!
+

𝜋5

1805
𝑥5

5!
−⋯

• 弧度法では形式的にラジアンという単位を使うが，実際は円の半径
と孤の比であるから（長さの単位に依存しない）無次元量である．

• 本来，数は無次元量であり，それゆえ 𝑥 + 𝑥3 のような計算が意味
を持つのである．



マクローリン展開（例）
例9.9

• 𝑓 𝑥 =
1

1−𝑥
の有限マクローリン展開を求める．
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𝑓′ 𝑥 =
1

1−𝑥 2, 𝑓
′′ 𝑥 =

2

1−𝑥 3, 𝑓
3 𝑥 =

3⋅2

1−𝑥 4, ⋯

であり，一般に 𝑓 𝑘 𝑥 =
𝑘!

1−𝑥 𝑘+1 であるから，0 < 𝜃 < 1が存在し

1

1 − 𝑥
= ෍

𝑘=0

𝑛−1

𝑥𝑘 +
1

1 − 𝜃𝑥 𝑛+1 𝑥
𝑛 = 1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑛−1 +

1

1 − 𝜃𝑥 𝑛+1 𝑥
𝑛

• 0 ≤ 𝑥 <
1

2
であれば

𝑥 𝑛

1 − 𝜃𝑥 𝑛+1 ≤
𝑥 𝑛

1 − 𝑥
𝑛+1 → 0 𝑛 → ∞

であるから，
1

1−𝑥
のマクローリン展開は

1

1 − 𝑥
= ෍

𝑘=0

∞

𝑥𝑘 = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 +⋯

• 実際には，−1 < 𝑥 < 1 においてマクローリン展開が成立する．（等比数列の和と
思えばよい．）



マクローリン展開（例）
例9.10

• 𝑓 𝑥 = log 1 + 𝑥 の有限マクローリン展開を求める．

19

𝑓′ 𝑥 =
1

1+𝑥
, 𝑓′′ 𝑥 =

−1

1+𝑥 2, 𝑓
3 𝑥 =

2

1+𝑥 3, ⋯

であり，一般に 𝑓 𝑘 𝑥 =
−1 𝑘+1 𝑘−1 !

1+𝑥 𝑘 であるから，0 < 𝜃 < 1が存在し

log 1 + 𝑥 = ෍

𝑘=0

𝑛−1

−1 𝑘+1
𝑥𝑘

𝑘
+

−1 𝑛+1

𝑛 1 + 𝜃𝑥 𝑛
𝑥𝑛= 𝑥 −

𝑥2

2
+
𝑥3

3
−⋯+ −1 𝑛

𝑥𝑛−1

𝑛 − 1
+

−1 𝑛+1

𝑛 1 + 𝜃𝑥 𝑛
𝑥𝑛

• 0 ≤ 𝑥 ≤ 1 であれば

−1 𝑛+1𝑥𝑛

𝑛 1 + 𝜃𝑥 𝑛
≤
1

𝑛
→ 0 𝑛 → ∞

であるから，log 1 + 𝑥 のマクローリン展開は

log 1 + 𝑥 = ෍

𝑘=0

∞

−1 𝑘+1
𝑥𝑘

𝑘
= 𝑥 −

𝑥2

2
+
𝑥3

3
−
𝑥4

4
⋯

• 実際は，−1 < 𝑥 < 1 においてマクローリン展開が成立する．



解析関数
定義9.11

• 𝐶∞ 級関数 𝑓 𝑥 が 𝑎 の近傍で，テイラー展開

20

𝑓 𝑥 = ෍

𝑘=0

∞
𝑓 𝑘 𝑎

𝑘!
𝑥 − 𝑎 𝑘

されるとき，𝑓 𝑥 は 𝑎 で解析的と呼ばれる．

• 定義域の任意の点で解析的な関数を解析的関数という．



解析的でない 𝐶∞関数
例9.12

• 𝐶∞ 関数であっても，解析的でない関数は存在する．
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• 例えば

𝑓 𝑥 =
𝑒−

1
𝑥

0

𝑥 > 0

𝑥 ≤ 0

は，原点 0において解析的ではない．

• 実際

𝑓′ 𝑥 =
1

𝑥2
𝑒−

1
𝑥 → 0 𝑥 → +0

といった計算から，すべての 𝑛 ∈ ℕに対して 𝑓 𝑛 0 = 0が成り
立っている．

• もし，𝑓 𝑥 がマクローリン展開可能だとすると，𝑓 𝑥 = 0 となって矛
盾する．



近似値の計算（応用）
問題9.13

• sin 𝑥 のマクローリン展開

22

sin 𝑥 = 𝑥 −
𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+
𝑥9

9!
−⋯

を用いて，sin 1の近似値を求めなさい．

• 実際の値，sin 1 = 0.841470… と比べなさい．

1 −
1

3!
=

1 −
1

3!
+
1

5!
=

1 −
1

3!
+
1

5!
−
1

7!
=

1 −
1

3!
+
1

5!
−
1

7!
+
1

9!
=



極限の計算（応用）
問題9.15

• マクローリン展開を使って，次の極限を求めなさい．

23

lim
𝑥→0

sin 𝑥 − 𝑥

𝑥3

= lim
𝑥→0

−
𝑥3

6 +
𝑥5

120 −⋯

𝑥3

lim
𝑥→0

𝑒𝑥 − 1 − 𝑥

𝑥2

lim
𝑥→0

sin 𝑥 − 𝑥

𝑥3

lim
𝑥→0

𝑒𝑥 − 1 − 𝑥

𝑥2
=



オイラーの公式（発展）
• 指数関数と三角関数は一見無関係のように思えるが，テイラー展開を考えると類
似性が浮かびあがってくる．

24

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+
𝑥4

4!
+
𝑥5

5!
+
𝑥6

6!
+
𝑥7

7!
+⋯

sin 𝑥 = 𝑥 −
𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+ ⋯

cos 𝑥 = 1 −
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+ ⋯

• 𝑖2 = −1 なる虚数 𝑖 を考えて，指数関数のテイラー展開において，𝑥 を 𝑖𝑥 に置き
換えると

𝑒𝑖𝑥 = 1 + 𝑖𝑥 +
𝑖𝑥 2

2!
+

𝑖𝑥 3

3!
+

𝑖𝑥 4

4!
+

𝑖𝑥 5

5!
+

𝑖𝑥 6

6!
+

𝑖𝑥 7

7!
+ ⋯

= 1 + 𝑖𝑥 −
𝑥2

2!
− 𝑖

𝑥3

3!
+
𝑥4

4!
+ 𝑖

𝑥5

5!
−
𝑥6

6!
− 𝑖

𝑥7

7!
+⋯

= 1 −
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+ ⋯+ 𝑖 𝑥 −

𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+ ⋯

= cos 𝑥 + 𝑖 sin 𝑥

• 𝑒𝑖𝑥 が何を意味するかを理解するには，複素関数論を勉強する必要がある．



オイラーの公式（発展）
定理9.16（オイラーの公式）
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𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥

• 特に 𝑥 = 𝜋 として

𝑒𝑖𝜋 = −1

は美しい数式として有名である．

レオンハルト・オイラー
1707年4月15日～1783年9月18日

• 𝑒−𝑖𝑥 = cos(−𝑥) + 𝑖 sin(−𝑥) = cos 𝑥 − 𝑖 sin 𝑥 から

sin 𝑥 =
𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2𝑖
cos 𝑥 =

𝑒𝑖𝑥 + 𝑒−𝑖𝑥

2

となり，これは双曲線関数の定義と似ている．

sinh 𝑥 =
𝑒𝑥 − 𝑒−𝑥

2
cosh 𝑥 =

𝑒𝑥 + 𝑒−𝑥

2



arctanのマクローリン展開（発展）
定理9.17

• arctan𝑥 のマクローリン展開

26

arctan 𝑥 ′ =
1

1 + 𝑥2

arctan𝑥 = 𝑥 −
𝑥3

3
+
𝑥5

5
−
𝑥7

7
+⋯+

−1 𝑛−1

2𝑛 − 1
𝑥2𝑛−1 +⋯

• arctan𝑥 (𝑛) を求めてマクローリン展開を求めるのは少し難しい．

定理9.18

• arctan1 =
𝜋

4
なので，次の公式を得ることができる．

𝜋

4
= 1 −

1

3
+
1

5
−
1

7
+⋯+

−1 𝑛−1

2𝑛 − 1
+⋯

• これを使って 𝜋 を求めるのは，収束が遅くかなり大変．

定理9.19（マチンの公式）
𝜋

4
= 4 arctan

1

5
− arctan

1

239



発展：arctanの高次微分（1）

• かなり大変

27

arctan 𝑥 ′ =
1

1 + 𝑥2

arctan 𝑥 ′′ =
1

1 + 𝑥2

′

=
−2𝑥

1 + 𝑥2 2

arctan 𝑥 3 =
−2𝑥

1 + 𝑥2 2

′

=
−2 1 + 𝑥2 2 + 8𝑥2(1 + 𝑥2)

1 + 𝑥2 4
=
−2 + 6𝑥2

1 + 𝑥2 3

arctan 𝑥 4 =
−2 + 6𝑥2

1 + 𝑥2 3

′

= ⋯



発展：arctanの高次微分（2）

• 積の微分の一般形は 𝑓 𝑥 𝑔 𝑥
𝑛
= σ𝑘=0

𝑛
𝑛C𝑘𝑓

𝑘 𝑥 𝑔 𝑛−𝑘 𝑥 となる．
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• 𝑓 𝑥 = arctan 𝑥 とおくと 𝑓′ 𝑥 =
1

1+𝑥2
なので 𝑓′ 𝑥 1 + 𝑥2 = 1 これを 𝑛

回微分する．

1 + 𝑥2 𝑓 𝑛+1 𝑥 + 2𝑛𝑥𝑓 𝑛 𝑥 + 𝑛 𝑛 − 1 𝑓 𝑛−1 𝑥 = 0

• 1 + 𝑥2 は3回以上微分すると 0 なので先頭の3つだけになる．

• 𝑥 = 0 とすると 𝑓 𝑛+1 0 + 𝑛 𝑛 − 1 𝑓 𝑛−1 0 = 0 となり，
• 𝑓′ 0 = 1, 𝑓′′ 0 = 0 より

𝑓 2𝑛 0 = 0 𝑓 2𝑛−1 0 = −1 𝑛−1 2𝑛 − 2 !

• arctanのマクローリン展開は

arctan 𝑥 = ෍

𝑘=0

∞

𝑓 𝑘 0
𝑥𝑘

𝑘!
= ෍

𝑛=1

∞

−1 𝑛−1 2𝑛 − 2 !
𝑥2𝑛−1

2𝑛 − 1 !
= ෍

𝑛=1

∞
−1 𝑛

2𝑛 − 1
𝑥2𝑛−1



まとめ
1. テイラーの定理の証明

2. テイラー展開，解析的関数

3. 応用，オイラーの公式

4. マチンの公式
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