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今日の内容
1. 二変数関数，極限，連続性

2. 偏微分，高次偏微分関数，全微分

3. 接平面，極値問題，ヘッセ行列式
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二変数関数
• これまでは一変数関数を議論してきたが，今回は二変数関数を考
える．
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定義10.1

• 部分集合 𝐷 ⊂ ℝ2 に対して，写像 𝑓:𝐷 → ℝ を二変数関数という．

• 𝑓 𝑥, 𝑦 = 2𝑥3 − 𝑥𝑦2 + 𝑦2 + 3
• 定義域は ℝ2

• 𝑔 𝑥, 𝑦 = 5 − 2𝑥2 − 𝑦2

• 定義域は楕円版 𝑥, 𝑦 2𝑥2 + 𝑦2 ≤ 5

• 𝑥, 𝑦 を ℝ2 の標準的な座標として，𝑓 𝑥, 𝑦 などと書かれる場合が多
い．



二変数関数のグラフ
定義10.2

• 𝑥𝑦𝑧-空間 ℝ3 上の点 𝑥, 𝑦, 𝑓 𝑥, 𝑦 を考えることで，関数 𝑓 𝑥, 𝑦 を

可視化できる．
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• 集合 𝑥, 𝑦, 𝑓 𝑥, 𝑦 𝑥 ∈ 𝐷 ⊂ ℝ3 を関数 𝑓 𝑥, 𝑦 のグラフという．



距離
• 極限を定義するために，まず2点間の距離を定義する．
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定義10.3

• ℝ2 上の2点 𝑥, 𝑦 と 𝑎, 𝑏 の距離を次で定義する．

𝑑 𝑥, 𝑦 , 𝑎, 𝑏 = 𝑥 − 𝑎 2 + 𝑦 − 𝑏 2

𝑥, 𝑦

𝑎, 𝑏 𝑥 − 𝑎

𝑦 − 𝑏

• 上記のような距離の定義をユークリッド距離という．



距離空間
定義10.4

• 𝑋 を空でない集合とする．関数 𝑑: 𝑋 × 𝑋 → ℝが以下の性質を持た
すとき，𝑑 を距離関数という．
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1. 𝑑 𝑥, 𝑦 ≥ 0

2. 𝑑 𝑥, 𝑦 = 0 ⟺ 𝑑 = 0

3. 𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥

4. 𝑑 𝑥, 𝑧 ≤ 𝑑 𝑥, 𝑦 + 𝑑(𝑦, 𝑧) （三角不等式）

• このとき， 𝑋, 𝑑 は距離空間（metric space）であるという．

𝑧

𝑥
𝑦

𝑑 𝑦, 𝑧

𝑑 𝑥, 𝑦

𝑑 𝑥, 𝑧

• ユークリッド距離は上記の距離関数の定義を満たしている．



極限
定義10.5

• 𝑥, 𝑦 → 𝑎, 𝑏 を 𝑑 𝑥, 𝑦 , 𝑎, 𝑏 → 0 として定義する．
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• 𝑥, 𝑦 → 𝑎, 𝑏 となるとき

• 𝑓 𝑥, 𝑦 → 𝛼 ∈ ℝであることを

lim
𝑥,𝑦 → 𝑎,𝑏

𝑓 𝑥, 𝑦 = 𝛼

• 𝑓 𝑥, 𝑦 の値がいくらでも大きく（小さく）なることを

lim
𝑥,𝑦 → 𝑎,𝑏

𝑓 𝑥, 𝑦 = +∞ −∞

と書く．

• 一変数関数に関しては，右極限と左極限が一致すれば極限が存在した．
数直線上のある点への近づき方は本質的に2通りしかないからである．

• 一方で2次元では点への近づき方の自由度は
無限であり，どのような近づき方に関しても関数
が同じ値に近づく場合に限り極限が存在するこ
とをこの定義は意味している．

𝑥

𝑦



極限が存在しない例
例10.6

• 𝐷 = 𝑥, 𝑦 ∈ ℝ 𝑥, 𝑦 ≠ 0,0 で定義された関数 𝑓 𝑥, 𝑦 =
𝑥2−𝑦2

𝑥2+𝑦2

を考える．
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1. 𝑦 = 0 を満たしながら 𝑥, 𝑦 が 0,0 に近づく極限は

lim
𝑥,0 → 0,0

𝑥2 − 𝑦2

𝑥2 + 𝑦2
= lim

𝑥→0

𝑥2

𝑥2
= lim

𝑥→0
1 = 1

2. 𝑥 = 0 を満たしながら 𝑥, 𝑦 が 0,0 に近づく極限は

lim
0,𝑦 → 0,0

𝑥2 − 𝑦2

𝑥2 + 𝑦2
= lim

𝑦→0

−𝑦2

𝑦2
= lim

𝑦→0
−1= −1

• これにより， lim
𝑥,𝑦 → 0,0

𝑥2−𝑦2

𝑥2+𝑦2
は存在しない．



極限が存在する例
例10.7

• 𝐷 = 𝑥, 𝑦 ∈ ℝ 𝑥, 𝑦 ≠ 0,0 で定義された関数 𝑓 𝑥, 𝑦 =
𝑥2𝑦

𝑥2+𝑦2

について， lim
𝑥,𝑦 → 0,0

𝑓 𝑥, 𝑦 を考察する．
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• 極座標 𝑟, 𝜃 と呼ばれる

𝑓 𝑥, 𝑦 =
𝑟 cos 𝜃 2𝑟 sin 𝜃

𝑟 cos 𝜃 2 + 𝑟 sin 𝜃 2

• 𝑥2 + 𝑦2 = 𝑟 に注意すると， lim
𝑥,𝑦 → 0,0

𝑓 𝑥, 𝑦 ≤ lim
𝑟→0

𝑟 = 0 である

から

𝑥 = 𝑟 cos 𝜃 𝑦 = 𝑟 sin 𝜃

なる変数変換を考えると

= 𝑟 cos2 𝜃 sin 𝜃

lim
𝑥,𝑦 → 0,0

𝑓 𝑥, 𝑦 = 0



連続性
定義10.8

• 二変数関数 𝑓 𝑥, 𝑦 がその定義域の点 𝑎, 𝑏 で連続であるとは
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lim
𝑥,𝑦 → 𝑎,𝑏

𝑓 𝑥, 𝑦 = 𝑓 𝑎, 𝑏

が成立すること．

• 定義域の任意の点で連続な関数を連続関数という．

• 一変数関数の場合と同様に，二変数関数も四則演算により連続性は保た
れる．

𝛼𝑓 𝑥, 𝑦 + 𝛽𝑔 𝑥, 𝑦 𝑓 𝑥, 𝑦 𝑔 𝑥, 𝑦 𝛼, 𝛽 ∈ ℝ

も 𝑎, 𝑏 で連続である．

• 特に変数 𝑥, 𝑦 についての多項式関数，有理式関数は連続関数である．

つまり左辺の極限が存在し，それが 𝑓 𝑎, 𝑏 と一致する
こと．

例えば，𝑓 𝑥, 𝑦 , 𝑔 𝑥, 𝑦 が 𝑎, 𝑏 で連続であれば，

• また，連続関数は合成によっても保たれ，これらと指数関数，対数関数，
三角関数，逆三角関数等を合成した関数も，その定義域において連続関
数となる．



偏微分
• 二変数関数は1つの変数以外を定数とみなして微分を考えることが
できる．
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定義10.9

• 二変数関数 𝑓 𝑥, 𝑦 の変数 𝑦 を定数 𝑏 として，𝑥 のみを変数とする
一変数関数 𝑓 𝑥, 𝑏 が 𝑥 = 𝑎 で微分可能なとき，つまり極限

lim
ℎ→0

𝑓 𝑎 + ℎ, 𝑏 − 𝑓 𝑎, 𝑏

ℎ

が存在するとき，𝑓 𝑥, 𝑦 は 𝑎, 𝑏 において 𝑥 に関して偏微分可能
であるという．

• この極限を 𝑓𝑥 𝑎, 𝑏 , 
𝜕𝑓

𝜕𝑥
(𝑎, 𝑏) などと書き，𝑓 𝑥, 𝑦 の 𝑎, 𝑏 におけ

る 𝑥 に関する偏微分係数という．

• 𝑦 に関する偏微分可能性，偏微分係数も同様に定める．



偏導関数
定義10.10

• 二変数関数 𝑓 𝑥, 𝑦 が定義域の任意の点において 𝑥 に関して偏微
分可能であるとき，𝑓 𝑥, 𝑦 は 𝑥 に関して偏微分可能であるという．
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• このとき関数 𝑓𝑥 𝑥, 𝑦 または
𝜕𝑓

𝜕𝑥
𝑥, 𝑦 を 𝑓 𝑥, 𝑦 の 𝑥 に関する偏

導関数という．

• 𝑥 に関する偏導関数を求めることを 𝑥 に関して偏微分するという．

• 𝑦 に関する偏導関数，偏微分も同様に定める．



偏導関数（例）
例10.11

• 二変数関数 𝑓 𝑥, 𝑦 = 𝑥2𝑦3 + 4𝑥 − 5𝑦 + 6の偏導関数を求める．
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1. 𝑥 を変数，𝑦 を定数とみなして，𝑥 に関する偏導関数を求める．

𝑓𝑥 𝑥, 𝑦 =
𝜕

𝜕𝑥
𝑥2𝑦3 + 4𝑥 − 5𝑦 + 6 = 2𝑥𝑦3 + 4

2. 𝑥 を定数，𝑦 を変数とみなして，𝑥 に関する偏導関数を求める．

𝑓𝑦 𝑥, 𝑦 =
𝜕

𝜕𝑦
𝑥2𝑦3 + 4𝑥 − 5𝑦 + 6 = 3𝑥2𝑦2 − 5

問題10.12

• 𝑓 𝑥, 𝑦 = 𝑥𝑦2 + sin 𝑥 + cos 𝑦の偏導関数を求める．



偏導関数
• 一変数関数は微分可能であれば連続であったが，偏微分可能な二
変数関数は連続とは限らない．
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• 例えば，ℝ2 で定義された

𝑓 𝑥, 𝑦 =

𝑥𝑦

𝑥2 + 𝑦2

0

𝑥, 𝑦 ≠ 0,0

𝑥, 𝑦 = 0,0

を考える．

𝑓𝑥 0,0 = lim
ℎ→0

𝑓 0 + ℎ, 0 − 𝑓 0,0

ℎ
= lim

ℎ→0

0 − 0

ℎ
= 0

𝑓𝑦 0,0 = lim
ℎ→0

𝑓 0,0 + ℎ − 𝑓 0,0

ℎ
= lim

ℎ→0

0 − 0

ℎ
= 0

であるが， lim
𝑥,𝑦 → 0,0

𝑓 𝑥, 𝑦 =
1

2
≠ 𝑓 0,0 ．



高次偏導関数
定義10.13

• 二変数関数 𝑓 𝑥, 𝑦 の偏導関数 𝑓𝑥 𝑥, 𝑦 と 𝑓𝑦 𝑥, 𝑦 がさらに 𝑥 と 𝑦

で偏微分可能であるとき，その偏導関数を 𝑓 𝑥, 𝑦 の2次偏導関数
という．このとき 𝑓 𝑥, 𝑦 は2回偏微分可能であるという．
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1. 𝑓𝑥 𝑥, 𝑦 の 𝑥 に関する偏導関数を

𝑓𝑥𝑥 𝑥, 𝑦 =
𝜕2𝑓

𝜕𝑥2
(𝑥, 𝑦) =

𝜕2𝑓

𝜕𝑥𝜕𝑥
(𝑥, 𝑦) =

𝜕

𝜕𝑥

𝜕𝑓

𝜕𝑥
(𝑥, 𝑦)

2. 𝑓𝑥 𝑥, 𝑦 の 𝑦 に関する偏導関数を

𝑓𝑥𝑦 𝑥, 𝑦 =
𝜕2𝑓

𝜕𝑦𝜕𝑥
(𝑥, 𝑦) =

𝜕

𝜕𝑦

𝜕𝑓

𝜕𝑥
(𝑥, 𝑦)

などと表す．𝑓𝑦 𝑥, 𝑦 の偏微分も同様である．



高次偏微分関数
• 𝑓 𝑥, 𝑦 の 𝑘 回偏微分可能性や 𝑘 次偏導関数も同様に定義される．
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• 𝑘 次偏導関数は 2𝑘 通り考えられるが，次の定理により，多くの高
次偏導関数は偏微分の順序に依存しない．

定理10.14

• 𝑓𝑥𝑦 𝑥, 𝑦 と 𝑓𝑦𝑥 𝑥, 𝑦 が存在し，連続であるとき

𝑓𝑥𝑦 𝑥, 𝑦 = 𝑓𝑦𝑥 𝑥, 𝑦 ．

• 𝑓 𝑥, 𝑦 が 𝑘 回偏微分可能で，𝑘 次までのすべての偏導関数が連
続となるとき，𝑓 𝑥, 𝑦 は 𝑘 回連続微分可能，または 𝐶𝑘 級であると
いう．

• 無限回連続微分可能，𝐶∞ 級も同様に定義される．



高次偏導関数
例10.15

• 𝑓 𝑥, 𝑦 = 𝑥𝑦2 + sin 𝑥 + cos 𝑦の2次偏導関数を求める．
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1. 𝑓𝑥 𝑥, 𝑦 = 𝑦2 + cos 𝑥

𝑓𝑥𝑥 𝑥, 𝑦 = −sin 𝑥 𝑓𝑥𝑦 𝑥, 𝑦 = 2𝑦

2. 𝑓𝑦 𝑥, 𝑦 = 2𝑥𝑦 − sin 𝑦

𝑓𝑦𝑥 𝑥, 𝑦 = 2𝑦 𝑓𝑦𝑦 𝑥, 𝑦 = 2𝑥 − cos 𝑦



高次偏導関数（問題）
問題10.16

• 次の関数の2次偏導関数を求めよ．

1. 2𝑥3 − 3𝑥2𝑦 − 4𝑥𝑦2 + 5𝑦4

2.
𝑥

𝑦

3. 𝑥 log 𝑦

4. 𝑥 cos 𝑥 + 𝑦
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全微分
• 偏微分は一変数関数の微分を用いて簡単に定義ですることができ
るが，極限の取り方が限られているため，不都合なことが多い．
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定義10.17

• 二変数関数 𝑓 𝑥, 𝑦 が 𝑎, 𝑏 で全微分可能であるとは，ある 𝐴, 𝐵 ∈
ℝが存在して

lim
ℎ,𝑘 → 0,0

𝑓 𝑎 + ℎ, 𝑏 + 𝑘 − 𝑓 𝑎, 𝑏 − 𝐴 ℎ − 𝐵 𝑘

ℎ2 + 𝑘2
= 0

が成立すること．

• 𝑓 𝑥, 𝑦 が 𝑎, 𝑏 で全微分可能であるとき， 𝑎, 𝑏 で連続かつ偏微
分可能であり

𝐴 = 𝑓𝑥 𝑎, 𝑏 𝐵 = 𝑓𝑦 𝑎, 𝑏

• そこで一変数関数の微分を全微分と呼ばれる概念へ一般化する．



全微分
• 一変数関数に関しては，微分可能性は一次式で近似できる（接線
が存在する）と同値であった．
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• 二変数関数に関しては，𝑥, 𝑦 で偏微分可能であっても一次式で近
似できる（接平面が存在する）とは限らない．

• 二変数関数 𝑓 𝑥, 𝑦 が 𝑎, 𝑏 で全微分可能であれば，そのグラフ
が接平面を与える一次式

𝑧 = 𝑓 𝑎, 𝑏 + 𝑓𝑥 𝑎, 𝑏 𝑥 − 𝑎 + 𝑓𝑦 𝑎, 𝑏 𝑦 − 𝑏

で 𝑓 𝑥, 𝑦 は 𝑎, 𝑏 の近傍で近似される．



全微分可能性
定理10.18

• 𝑓 𝑥, 𝑦 が 𝐶1 級（各成分について偏微分可能，かつ偏導関数が連
続）であれば，全微分可能である．
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• 例えば，ℝ2 で定義された

𝑓 𝑥, 𝑦 =

𝑥 𝑦

𝑥2 + 𝑦2

0

𝑥, 𝑦 ≠ 0,0

𝑥, 𝑦 = 0,0

は原点において全微分可能である（偏微分可能であるが，偏導関
数は連続でない）．

• 実際の計算に現れる関数は 𝐶∞ 級であることが多いので，あまり神
経質になる必要はない．



接平面
例10.19

• 二変数関数 𝑓 𝑥, 𝑦 = 𝑥2 + 3𝑦2 のグラフの点 1,2,13 における接
平面を求める．
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𝑓𝑥 𝑥, 𝑦 = 2𝑥 𝑓𝑦 𝑥, 𝑦 = 6𝑦

より，𝑓 𝑥, 𝑦 は 𝐶1 級であるから，

𝑧 = 13 + 2 𝑥 − 1 + 12 𝑦 − 2

で与えられる．

• 整理すれば

𝑧 = 2𝑥 + 12𝑦 − 13

接平面の方程式は



極値と停留点
• 以下では，二変数関数 𝑓 𝑥, 𝑦 は 𝐶2 級であるとする．
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• 𝑓 𝑥, 𝑦 の停留点とは，𝑓𝑥 𝑎, 𝑏 = 𝑓𝑦 𝑎, 𝑏 = 0 を満たす 𝑎, 𝑏 をい

う．

定理10.20

• 関数 𝑓 𝑥, 𝑦 が 𝑎, 𝑏 で極値（極大値または極小値）を取るとき，
𝑎, 𝑏 は停留点となる．

• この定理は，一変数関数 𝑓 𝑥, 𝑏 と 𝑓 𝑎, 𝑦 が 𝑎, 𝑏 で極値を取る
ことから分かる．

• 停留点は極値とは限らない．

• 例えば，鞍点と呼ばれる，ある方向から見ると極大値，別の方向か
ら見ると極小値となる停留点も存在する．

あん てん



極値問題の主定理
定理10.21

• 関数 𝑓 𝑥, 𝑦 のヘッセ行列式（ヘッシアン）を
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𝐻 𝑥, 𝑦 = 𝑓𝑥𝑥 𝑥, 𝑦 𝑓𝑦𝑦 𝑥, 𝑦 − 𝑓𝑥𝑦 𝑥, 𝑦 2

で定義する．

• 停留点 𝑎, 𝑏 に関して

1. 𝐻 𝑎, 𝑏 > 0, 𝑓𝑥𝑥 𝑎, 𝑏 > 0 ならば 𝑓 𝑥, 𝑦 は 𝑎, 𝑏 で極小，

2. 𝐻 𝑎, 𝑏 > 0, 𝑓𝑥𝑥 𝑎, 𝑏 < 0 ならば 𝑓 𝑥, 𝑦 は 𝑎, 𝑏 で極大，

3. 𝐻 𝑎, 𝑏 < 0 ならば 𝑎, 𝑏 は 𝑓 𝑥, 𝑦 の鞍点．

• 𝐻 𝑎, 𝑏 > 0の下で，条件 𝑓𝑥𝑥 𝑎, 𝑏 ≷ 0は条件 𝑓𝑦𝑦 𝑎, 𝑏 ≷ 0 と同

値であることに注意する．



極値問題
例10.22

• 関数 𝑓 𝑥, 𝑦 = 𝑥2 + 𝑥2𝑦 + 𝑦2 の極値を調べる．
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• まず

𝑓𝑥 𝑥, 𝑦 = 2𝑥 + 2𝑥𝑦 = 2𝑥 1 + 𝑦 = 0 𝑓𝑦 𝑥, 𝑦 = 𝑥2 + 2𝑦 = 0

を解くことで，停留点は

𝑥, 𝑦 = 0,0 , ± 2,−1
だと分かる．

• また，2次偏導関数は

𝑓𝑥𝑥 𝑥, 𝑦 = 2 1 + 𝑦 𝑓𝑥𝑦 𝑥, 𝑦 = 2𝑥 𝑓𝑦𝑦 𝑥, 𝑦 = 2

であるから
𝐻 𝑥, 𝑦 = 2 1 + 𝑦 ⋅ 2 − 2𝑥 2 = 4 1 + 𝑦 − 𝑥2

• 点 0,0 に関して

𝐻 0,0 = 4 > 0 𝑓𝑥𝑥 0,0 = 2

であるから，𝑓 𝑥, 𝑦 は 𝑓 0,0 = 0において極小値である．

• 点 ± 2,−1 に関して

𝐻 ± 2, 0 = −8 < 0

であるから，𝑓 𝑥, 𝑦 は ± 2,−1 において極値を取らない．



極値と停留点（発展）
発展10.23

• 二変数関数に関しても，テイラー展開を行うことが可能で 𝐶2 級関
数 𝑓 𝑥, 𝑦 は停留点 𝑎, 𝑏 の近傍で次の形に近似される．（停留点
という条件から，一次部分は消えている．）
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𝑓 𝑥, 𝑦 ≈ 𝑓 𝑎, 𝑏 +
1

2
𝑓𝑥𝑥 𝑎, 𝑏 𝑥 − 𝑎 2

+𝑓𝑥𝑦 𝑎, 𝑏 𝑥 − 𝑎 𝑦 − 𝑏 +
1

2
𝑓𝑦𝑦 𝑎, 𝑏 𝑦 − 𝑏 2

= 𝑓 𝑎, 𝑏 +
1

2
𝑥 − 𝑎 𝑦 − 𝑏

𝑓𝑥𝑥 𝑎, 𝑏 𝑓𝑥𝑦 𝑎, 𝑏

𝑓𝑦𝑥 𝑎, 𝑏 𝑓𝑦𝑦 𝑎, 𝑏

𝑥 − 𝑎
𝑦 − 𝑏

• ヘッセ行列式 𝐻 𝑎, 𝑏 は
𝑓𝑥𝑥 𝑎, 𝑏 𝑓𝑥𝑦 𝑎, 𝑏

𝑓𝑦𝑥 𝑎, 𝑏 𝑓𝑦𝑦 𝑎, 𝑏
の行列式に他なら

ない．

• 定理10.21は対称2次形式の分類に関係する．



まとめ
1. 二変数関数，極限，連続性

2. 偏微分，高次偏導関数，全微分

3. 接平面，極値問題，ヘッセ行列式
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