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今日の内容
1. 面積

• 区分求積法

• リーマン積分

• 定積分

2. 微積分の基本定理

• 定積分の計算
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面積
• 平面図形の面積
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• 長方形の面積は「縦の長さ ×横の長さ」で定義することができる
が，一般の図形の面積とは何であろうか?

• 一般の図形に対して，小さな長方形の集まりでその図形を近似し
た極限をもって面積を定義することを考える．

• この「長方形を面積の基礎とする」という観点からは，三角形の面
積や円の面積の計算は自明ではない．



平面図形の正方形分割
• 下図の図形（楕円）の面積 𝑆が存在したとして，面積 1の正方形を
用いて近似することを考える．
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• 図形に含まれる正方形は7個，図形と共通部分を持つ正方形は27

個であるから

7 ≤ 𝑆 ≤ 27



平面図形の正方形分割

• 正方形の一辺を半分にして，面積
1

4
の正方形を用いて近似するこ

とを考える．
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• 図形に含まれる正方形は44個，図形と共通部分を持つ正方形は
76個であるから

11 ≤ 𝑆 ≤ 19



平面図形の正方形分割

• 正方形の一辺をさらに半分にして，面積
1

16
の正方形を用いて近似

することを考える．
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• 図形に含まれる正方形は208個，図形と共通部分を持つ正方形は
272個であるから

13 ≤ 𝑆 ≤ 17



平面図形の正方形分割

• 面積が
1

2𝑛
の正方形を用いて近似することを考える．
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• 図形に含まれる正方形の面積の合計 𝑠𝑛 を内部面積，図形と共通
部分を持つ正方形の面積の合計 𝑆𝑛 を外部面積という．

𝑠1 ≤ 𝑠2 ≤ 𝑠3 ≤ ⋯ ≤ 𝑆 ≤ ⋯ ≤ 𝑆3 ≤ 𝑆2 ≤ 𝑆1

• 図形の面積が存在すれば

• 正方形を小さくすることで，内部と外部からの図形の面積の近似精
度が上がると考えられる．



区分求積法
定義13.1

• 極限 lim
𝑛→∞

𝑠𝑛 と lim
𝑛→∞

𝑆𝑛 が存在し，両者が一致するとき，図形は面積

確定，もしくはジョルダン可測と呼ばれ，その面積を

8

𝑆 = lim
𝑛→∞

𝑠𝑛 = lim
𝑛→∞

𝑆𝑛

と定義する．

• 一般に，長方形を用いて面積を定義・計算する方法を区分求積法と
いう．

• 面積確定でない図形も存在する．

• 実際，様々な測度（面積の定め方）が存在し，与えられた図形の面
積が定義できるか否かは測度に依存する．

• この講義では，上記の意味での面積を考えることにする．



区分求積法
• 区分求積法を用いて，𝑓 𝑥 = 𝑥2 のグラフ，𝑥-軸，直線 𝑥 = 1に囲
まれた領域の面積 𝑆 を求める．
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• 区間 0,1 を 𝑛等分して，各小区間の幅を一辺とする長方形を考え
る．
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区分求積法

• 𝑛 = 10のとき
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に注意する．



区分求積法
• 一般に
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• したがって， lim
𝑛→∞

𝑆𝑛 =
1
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• 一方で，𝑆𝑛 − 𝑠𝑛 =
1

𝑛
に注意すると， lim

𝑛→∞
𝑠𝑛 =
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領域の面積は



区分求積法
• 一般の関数 𝑓 𝑥 について考える．
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• まずは，𝑓 𝑥 ≥ 0のとき，𝑓 𝑥 のグラフ，𝑥-軸．直線 𝑥 = 𝑎, 𝑥 = 𝑏
で囲まれた領域を考える．

• 区間 𝑎, 𝑏 を 𝑛等分する小区間の幅を ∆𝑥 = 𝑏 − 𝑎 /𝑛 とおく．

𝑥

𝑦

𝑎 𝑏
𝑥

𝑦

𝑎 𝑏

• 𝑘 番目の小区間において，𝑓 𝑥 の最小を与える点を 𝑥𝑘, 最大値を
与える点を 𝑋𝑘 とし，領域を内側と外側から近似する長方形の集ま
りの面積をそれぞれ 𝑠𝑛, 𝑆𝑛 とすると

𝑠𝑛 = ෍
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𝑛

𝑓 𝑋𝑘 ∆𝑥



リーマン和
• 𝑠𝑛 = σ𝑘=1

𝑛 𝑓 𝑥𝑘 ∆𝑥 は下ダブル―和と呼ばれ 𝑠1 ≤ 𝑠2 ≤ ⋯
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𝑆∗ = lim
𝑛→∞

𝑠𝑛

を区間 𝑎, 𝑏 における 𝑓 𝑥 の下積分という，

• 𝑆𝑛 = σ𝑘=1
𝑛 𝑓 𝑋𝑘 ∆𝑥 は上ダブル―和と呼ばれ 𝑆1 ≥ 𝑆2 ≥ ⋯

𝑆∗ = lim
𝑛→∞

𝑆𝑛

を区間 𝑎, 𝑏 における 𝑓 𝑥 の上積分という，

• 有界な単調増加（減少）数列であることから収束が保証される．



リーマン積分
定義13.2

• 下積分 𝑆∗ と上積分 𝑆∗ が一致するとき，𝑓 𝑥 はリーマン積分可能
といい，その値 𝑆∗ = 𝑆∗ を
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න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

と表す．

• この値を 𝑓 𝑥 のリーマン積分，もしくは定積分という．

• 𝑓 𝑥 は被積分関数， 𝑎, 𝑏 は積分区間，𝑎 は下端，𝑏 は上端と呼
ばれる．

• 一般に，σ𝑘=1
𝑛 𝑓 𝑥𝑘

∗ ∆𝑥 の形の和をリーマン和という（𝑥𝑘
∗ は 𝑘 番目

の小区間の点）．

• 𝑛 → ∞のとき，リーマン和が 𝑥𝑘
∗ の取り方によらずある値に収束す

ることと，リーマン積分可能性は同値であり，その極限値がリーマン
積分である．



リーマン積分不可能な関数
例13.3

• 不連続関数
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𝑓 𝑥 = ቊ
1
0

𝑥 ∈ ℚ

𝑥 ∉ ℚ

を考える．

• 任意の小区間において有理数と無理数はどちらも存在するため

𝑠𝑛 = ෍

𝑘=1

𝑛

𝑓 𝑥𝑘 ∆𝑥 = ෍

𝑘=1

𝑛

0 ⋅ ∆𝑥 = 0

𝑆𝑛 = ෍

𝑘=1

𝑛

𝑓 𝑋𝑘 ∆𝑥 = ෍

𝑘=1

𝑛

1 ⋅ ∆𝑥 = 𝑛 ∆𝑥 = 𝑏 − 𝑎

• 上積分と下積分が一致しないので，𝑓 𝑥 はリーマン積分不可能．

• 一方で，連続な関数はリーマン積分可能であることが知られている．



リーマン積分

• これまで被積分関数が積分区間上で非負の場合を考えたが，一般
の場合も定積分は考えられる．
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𝑥
𝑦 𝑎 𝑏

𝑥
𝑦

𝑎 𝑏

• まず 𝑓 𝑥 ≤ 0の場合も同様に積分区間を分割して，上下のダブル
―和を計算する．

𝑠𝑛 = ෍

𝑘=1

𝑛

𝑓 𝑥𝑘 ∆𝑥 𝑆𝑛 = ෍

𝑘=1

𝑛

𝑓 𝑋𝑘 ∆𝑥

• 𝑥𝑘 は 𝑘 番目の小区間での 𝑓 𝑥 に最大値を与える点，𝑋𝑘 は最小
値を与える点である．

• lim
𝑛→∞

𝑠𝑛 = lim
𝑛→∞

𝑆𝑛 であるとき，その値を定積分 𝑎׬
𝑏
𝑓 𝑥 𝑑𝑥 と定める．



リーマン積分

• 𝑓 𝑥 ≤ 0のとき，𝑓 𝑥 の定積分 ׬
𝑎

𝑏
𝑓 𝑥 𝑑𝑥 は，𝑓 𝑥 のグラフ，𝑥-

軸，線 𝑥 = 𝑎, 𝑥 = 𝑏 で囲まれた領域の面積の逆符号を与える．
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• 一般の関数 𝑓 𝑥 の定積分は，𝑓 𝑥 のグラフ， 𝑥-軸，直線 𝑥 = 𝑎, 

𝑥 = 𝑏 で囲まれた領域のうち，𝑥-軸より上の部分の面積を正，下の
部分の面積を負として足し合わせた値として定める．

𝑆1

𝑆2

𝑆3

𝑥

𝑦

𝑏𝑎

න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = 𝑆1 − 𝑆2 + 𝑆3



定積分の性質
• 𝑎, 𝑏 の大小が異なる場合も扱えるように，׬𝑏

𝑎
𝑓 𝑥 𝑑𝑥 = 𝑎׬−

𝑏
𝑓 𝑥 𝑑𝑥

と定義する．
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定理13.4

• 定積分は次の性質を持つ． 𝑘, 𝑙 ∈ ℝ

1. 𝑎׬
𝑏
𝑘 𝑓 𝑥 + 𝑙 𝑔 𝑥 𝑑𝑥 = 𝑘 𝑎׬

𝑏
𝑓 𝑥 𝑑𝑥 + 𝑙 𝑎׬

𝑏
𝑔 𝑥 𝑑𝑥

2. 𝑓 𝑥 ≤ 𝑔 𝑥 ⟹ 𝑎׬
𝑏
𝑓 𝑥 𝑑𝑥 ≤ 𝑎׬

𝑏
𝑔 𝑥 𝑑𝑥

3. 𝑎׬
𝑏
𝑓 𝑥 𝑑𝑥 ≤ 𝑎׬

𝑏
𝑓 𝑥 𝑑𝑥 𝑎 ≤ 𝑏

4. 𝑎׬
𝑐
𝑓 𝑥 𝑑𝑥 = 𝑎׬

𝑏
𝑓 𝑥 𝑑𝑥 + 𝑏׬

𝑐
𝑓 𝑥 𝑑𝑥



積分の平均値の定理
定理13.5

• 連続関数 𝑓 𝑥 に関して

19

න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = 𝑓 𝑐 𝑏 − 𝑎

を満たす 𝑐 ∈ 𝑎, 𝑏 が存在する．

𝑥

𝑦

𝑏𝑐𝑎

𝑓(𝑐)



積分の平均値の定理（証明）
• ワイエルシュトラスの定理より，連続関数 𝑓 𝑥 は 𝑎, 𝑏 において最
大値 𝑀 と最小値 𝑚 を持ち，
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𝑚 𝑏 − 𝑎 ≤ න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 ≤ 𝑀 𝑏 − 𝑎

• これより

𝑚 ≤
1

𝑏 − 𝑎
න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 ≤ 𝑀

• 連続関数に関する中間値の定理より

1

𝑏 − 𝑎
න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = 𝑓 𝑐

を満たす 𝑐 ∈ 𝑎, 𝑏 が存在する．



微積分の基本定理
定理13.6（微積分の基本定理）

• 連続関数 𝑓 𝑥 に対して，定積分で定まる関数
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𝑆 𝑥 = න
𝑎

𝑥

𝑓 𝑡 𝑑𝑡

は，𝑓 𝑥 の原始関数である．

𝑆′ 𝑥 =
𝑑

𝑑𝑥
න
𝑎

𝑥

𝑓 𝑡 𝑑𝑡 = 𝑓 𝑥

• ここで

𝑆 𝑐 − 𝑆 𝑏 = න
𝑎

𝑐

𝑓 𝑡 𝑑𝑡 − න
𝑎

𝑏

𝑓 𝑡 𝑑𝑡 = න
𝑏

𝑐

𝑓 𝑡 𝑑𝑡

つまり



微積分の基本定理（証明）
• まず
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𝑆 𝑥 + ℎ − 𝑆 𝑥 = න
𝑎

𝑥+ℎ

𝑓 𝑡 𝑑𝑡 − න
𝑎

𝑥

𝑓 𝑡 𝑑𝑡 = න
𝑥

𝑥+ℎ

𝑓 𝑡 𝑑𝑡

න
𝑥

𝑥+ℎ

𝑓 𝑡 𝑑𝑡 = 𝑓 𝑐 ℎ

となる 𝑐 ∈ 𝑥, 𝑥 + ℎ が存在する．

• ℎ → 0 とすると，𝑐 → 𝑥 なので

であるが，積分の平均値の定理より

𝑆′ 𝑥 = lim
ℎ→0

𝑆 𝑥 + ℎ − 𝑆 𝑥

ℎ
= lim

ℎ→0

𝑓 𝑐 ℎ

ℎ
= 𝑓 𝑥

• 厳密には ℎの正負で場合分けが必要である．



定積分と不定積分の関係
定理13.7

• 𝑓 𝑥 の原始関数の一つを 𝐹 𝑥 とすると
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න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = 𝐹 𝑏 − 𝐹 𝑎 =: 𝐹 𝑥 𝑎
𝑏

• つまり，定積分は区分求積法を用いなくとも原始関数から計算可能
である．

• 原始関数 𝐹 𝑥 は無数に存在するが，先ほど定義した 𝑆 𝑥 と定数
𝐶 を用いて 𝐹 𝑥 = 𝑆 𝑥 + 𝐶 と書けるので

𝐹 𝑏 − 𝐹 𝑎 = 𝑆 𝑏 + 𝐶 − 𝑆 𝑎 + 𝐶

= 𝑆 𝑏 − 𝑆 𝑎 = න
𝑎

𝑏

𝑓 𝑡 𝑑𝑡



定積分の計算例
例13.8
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න
1

2

3𝑥2 + 4𝑥 − 1 𝑑𝑥= 𝑥3 + 2𝑥2 − 𝑥 1
2 = 14 − 2 = 12

න
0

𝜋

sin 𝑥 𝑑𝑥 = −cos 𝑥 0
𝜋 = −cos 𝜋 − (− cos 0) = − −1 − −1 = 2

න
1

𝑒 1 + 𝑥2

𝑥
𝑑𝑥 = න

1

𝑒 1

𝑥
+ 𝑥 𝑑𝑥 = log 𝑥 +

1

2
𝑥2

1

𝑒

= log 𝑒 +
𝑒2

2
− log 1 −

1

2
=
𝑒2 + 1

2

න
0

2𝜋

sin 𝑥 𝑑𝑥

න
0

2𝜋

sin 𝑥 𝑑𝑥= −cos 𝑥 0
2𝜋= −cos2 𝜋 − (− cos 0) = − 1 − −1 = 0

= න
0

𝜋

sin 𝑥 𝑑𝑥 + න
𝜋

2𝜋

−sin 𝑥 𝑑𝑥 = −cos 𝑥 0
𝜋 + cos 𝑥 𝜋

2𝜋

= −cos𝜋 − −cos 0 + cos 2𝜋 − cos 𝜋 = 4



部分積分
定理13.9（部分積分の公式）
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න
𝑎

𝑏

𝑓 𝑥 𝑔′ 𝑥 𝑑𝑥 = 𝑓 𝑥 𝑔 𝑥 𝑎
𝑏 −න

𝑎

𝑏

𝑓′ 𝑥 𝑔 𝑥 𝑑𝑥

• 実際，不定積分の部分積分の公式

න𝑓 𝑥 𝑔′ 𝑥 𝑑𝑥 = 𝑓 𝑥 𝑔 𝑥 − න𝑓′ 𝑥 𝑔 𝑥 𝑑𝑥

より，𝐻 𝑥 = 𝑓 𝑥 𝑔 𝑥 − 𝑐׬
𝑥
𝑓′ 𝑡 𝑔 𝑡 𝑑𝑡は 𝑓 𝑥 𝑔′ 𝑥 の原始関数なので

න
𝑎

𝑏

𝑓 𝑥 𝑔′ 𝑥 𝑑𝑥 = 𝐻 𝑏 − 𝐻 𝑎

= 𝑓 𝑏 𝑔 𝑏 − න
𝑐

𝑏

𝑓′ 𝑡 𝑔 𝑡 𝑑𝑡 − 𝑓 𝑎 𝑔 𝑎 − න
𝑐

𝑎

𝑓′ 𝑡 𝑔 𝑡 𝑑𝑡

= 𝑓 𝑥 𝑔 𝑥 𝑎
𝑏 −න

𝑎

𝑏

𝑓′ 𝑥 𝑔 𝑥 𝑑𝑥



部分積分の計算例
例13.10
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න
1

2

4𝑥 log 𝑥 𝑑𝑥 = 2𝑥2 log 𝑥 1
𝑒 −න

1

2

2𝑥2 ⋅
1

𝑥
𝑑𝑥

= 2𝑥2 log 𝑥 1
𝑒 − 𝑥2 1

𝑒

= 2𝑒2 log 𝑒 − 2 log 1 − 𝑒2 − 1 = 𝑒2 + 1

න
0

𝜋
2
𝑥 cos 𝑥 𝑑𝑥 = 𝑥 sin 𝑥 0

𝜋
2 −න

0

𝜋
2
sin 𝑥 𝑑𝑥

= 𝑥 sin 𝑥 0

𝜋
2 − −cos 𝑥 0

𝜋
2

=
𝜋

2
− 0 − 0 + 1 =

𝜋

2
+ 1



置換積分
定理13.11（置換積分の公式）

• 関数 𝑓 𝑥 の変数 𝑥 が別の変数 𝑡の 𝐶1 級関数 𝑥 = 𝜙 𝑡 として表
されるとき

27

න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = න
𝛼

𝛽

𝑓 𝜙 𝑡 𝜙′ 𝑡 𝑑𝑡

ただし，𝜙 𝛼 = 𝑎, 𝜙 𝛽 = 𝑏 である．

• 実際，不定積分の置換公式

より，𝐹 𝑥 = 𝑓׬ 𝑥 𝑑𝑥のとき，𝐹 𝜙 𝑡 は 𝑓 𝜙 𝑡 𝜙′ 𝑡 の原始関数なので

න𝑓 𝑥 𝑑𝑥 = න𝑓 𝜙 𝑡 𝜙′ 𝑡 𝑑𝑡

න
𝛼

𝛽

𝑓 𝜙 𝑡 𝜙′ 𝑡 𝑑𝑡 = 𝐹 𝜙 𝛽 − 𝐹 𝜙 𝛼 = 𝐹 𝑏 − 𝐹 𝑎 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥



置換積分の計算例
例13.12

• 0׬
1

1 − 𝑥2 𝑑𝑥 を計算する．
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• 𝑥 = sin 𝑡 （0 ≤ 𝑡 ≤
𝜋

2
） と考えると

න
0

1

1 − 𝑥2 𝑑𝑥 = න
0

𝜋
2

1 − sin2 𝑡 cos 𝑡 𝑑𝑡

= න
0

𝜋
2
cos2 𝑡 𝑑𝑡 = න

0

𝜋
2 1

2
1 + cos 2𝑡 𝑑𝑡

=
1

2
𝑡 +

1

2
sin 2𝑡

0

𝜋
2

=
𝜋

4

• 途中，倍角の公式 cos 2𝜃 = 2 cos2 𝜃 − 1 を用いた．



定積分（問題）
問題13.13

• 次の定積分を計算せよ．

1. 0׬
1
𝑥 𝑒2𝑥𝑑𝑥

2. ׬
0

𝜋

3 tan 𝑥 𝑑𝑥

3. 0׬
1 1

4−𝑥2
𝑑𝑥
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まとめ
1. 面積

• 区分求積法

• リーマン積分

• 定積分

2. 微積分学の基本定理

• 定積分の計算
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