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今日の内容
• 行列式は行列の正則性を判定する指標であった（幾何学的な説明
を与えただけで, 証明はしていない）．

• 前回に引き続き, その具体的な計算方法に関して解説する．

• また行列式を利用した, 逆行列の具体的な計算方法も紹介する．

1.乗法性，ブロック行列

2.余因子展開，余因子行列
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乗法性
• 行列の乗法性は重要な性質なので，再掲する．
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定理9.1

• 𝑛次正方行列 𝐴, 𝐵 に対して

𝐴 𝐵 = 𝐴 𝐵

• 𝑛次正方行列 𝐴は線形写像 𝑓𝐴: ℝ
𝑛 → ℝ𝑛 の符号付き体積拡大率

という意味を持っていた．

• この幾何学的意味から，行列式の乗法性を理解することができる
（数学的な証明ではない）．



乗法性（2次正方行列）
例9.2

• 2次正方行列 𝐴 =
𝑎 𝑏
𝑐 𝑑

, 𝐵 =
𝑒 𝑓
𝑔 ℎ

について，行列式の乗法性

を確認する．
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𝐴 𝐵 =
𝑎𝑒 + 𝑏𝑔 𝑎𝑔 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ

= 𝑎𝑒 + 𝑏𝑔 𝑐𝑓 + 𝑑ℎ − 𝑎𝑓 + 𝑏ℎ 𝑐𝑒 + 𝑑𝑔

= 𝑎𝑒𝑐𝑓 + 𝑎𝑑𝑒𝑓 + 𝑏𝑐𝑓𝑔 + 𝑏𝑑𝑔ℎ − 𝑎𝑐𝑒𝑓 + 𝑎𝑑𝑓𝑔 + 𝑏𝑐𝑒𝑓 + 𝑏𝑑𝑔ℎ

= 𝑎𝑑𝑒𝑓 + 𝑏𝑐𝑓𝑔 − 𝑎𝑑𝑓𝑔 − 𝑏𝑐𝑒𝑓

= 𝑎𝑑 − 𝑏𝑐 𝑒ℎ − 𝑓𝑔

= 𝐴 𝐵



乗法性（証明）
• 𝐴 = 𝑎𝑖𝑗 , 𝐵 = 𝑏𝑖𝑗 としたとき，𝐵の行ベクトルを，𝒃1, 𝒃2, ⋯ , 𝒃𝑛 とする．

すなわち，𝒃𝑗 = 𝑏𝑗1, 𝑏𝑗2,⋯ , 𝑏𝑗𝑛 とする．

5

𝐴𝐵 =

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑛

𝒃1
⋮
𝒃𝑛

=

෍

𝑗1=1

𝑛

𝑎1𝑗1𝒃𝑗1

⋮

෍

𝑗𝑛=1

𝑛

𝑎𝑛𝑗𝑛𝒃𝑗𝑛

• 多重線形性（定理8.14 ）を繰り返し適用すると

𝐴𝐵 = ෍

𝑗1=1

𝑛

෍

𝑗2=1

𝑛

⋯ ෍

𝑗𝑛=1

𝑛

𝑎1𝑗1 ⋯𝑎1𝑗𝑛

𝒃𝑗1
⋮
𝒃𝑗𝑛

• 𝑛𝑛 個の和になるが，定理8.12（交代性）より，𝒃𝑗1 , ⋯ , 𝒃𝑗𝑛 の中に同じものがあると行列式は 0になるため，

𝑗1, ⋯ , 𝑗𝑛 が異なるものだけが残る．

𝐴𝐵 = ෍
1 2 ⋯ 𝑛
𝑗1 𝑗2 ⋯ 𝑗𝑛

∈𝑆𝑛

𝑎1𝑗1 ⋯𝑎𝑛𝑗𝑛

𝒃𝑗1
⋮
𝒃𝑗𝑛

= ෍

𝜎∈𝑆𝑛

𝑎1𝜎 1 ⋯𝑎𝑛𝜎 𝑛

𝒃𝜎 1

⋮
𝒃𝜎 𝑛

• 交代性（定理8.12 ）より，𝒃𝑗1 ,⋯ , 𝒃𝑗𝑛 を 𝒃1, ⋯ , 𝒃𝑛 に並び替えるには，𝜎 を互換で表した回数だけ符号が反

転するため

𝐴𝐵 = ෍

𝜎∈𝑆𝑛

𝑎1𝜎 1 ⋯𝑎𝑛𝜎 𝑛 sgn 𝜎
𝒃1
⋮
𝒃𝑛

= ෍

𝜎∈𝑆𝑛

sgn 𝜎 𝑎1𝜎 1 ⋯𝑎𝑛𝜎 𝑛

𝒃1
⋮
𝒃𝑛

= 𝐴 𝐵

(QED)



スカラー倍
• 行列のスカラー倍に関しては，𝐴 を 𝑛次正方行列，𝑘 ∈ ℝ としたと
き，次が成り立つことに注意．
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例9.3

𝑘 𝐴 = 𝑘𝑛 𝐴

2 4
6 8

= 2 ⋅
1 2
6 8

= 22 ⋅
1 2
3 4

2 4 8
6 2 0
4 10 −6

= 2 ⋅
1 2 4
6 2 0
4 10 −6

= 22 ⋅
1 2 4
3 1 0
4 10 −6

= 23 ⋅
1 2 4
3 1 0
2 5 −3



ブロック行列
定義9.4

• 𝐴, 𝐵, 𝐶, 𝐷 をそれぞれ 𝑘 × 𝑘, 𝑘 × 𝑙, 𝑙 × 𝑘, 𝑙 × 𝑙 型の行列とする．
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𝐴 𝐵
𝐶 𝐷

• 与えられた行列にブロック行列としての分解を与えることを，ブロッ
ク行列分解という．

• このとき，次の形の (𝑘 + 𝑙)次正方行列をブロック行列（区分行列）
という．



ブロック行列（例）
例9.5

• ブロック行列分解
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において，𝐴 = 1 , 𝐵 = 2 3 , 𝐶 =
4
7

, 𝐷 =
5 6
8 9

となる．

1 2 3
4 5 6
7 8 9

=
1 2 3
4 5 6
7 8 9

• 同じ行列に対して，複数のブロック行列分解が存在する．

1 2 3
4 5 6
7 8 9

=
1 2 3
4 5 6
7 8 9

• ブロック数を増やしたり，行と列で分解を変えることで，より一般の
ブロック行列を定義することができるが，簡単のため，この講義では
上記のような分解のみを考える．



ブロック行列
定理9.6

• 𝐴, 𝐵, 𝐶, 𝐷 をそれぞれ 𝑘 × 𝑘, 𝑘 × 𝑙, 𝑙 × 𝑘, 𝑙 × 𝑙 型の行列とする．

• また 𝑂 を零行列とする．
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1. 𝐶 = 𝑂 であるとき

𝐴 𝐵
𝑂 𝐷

= 𝐴 𝐷

2. 𝐵 = 𝑂 であるとき

𝐴 𝑂
𝐶 𝐷

= 𝐴 𝐷



ブロック行列（例）
例9.7
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1 2 3
4 5 6
0 0 9

=
1 2
4 5

9 = −27

1 2 3 4
5 6 7 6
0 0 4 3
0 0 2 1

=
1 2
5 6

4 3
2 1

= −4 ⋅ −2 = 8



ブロック行列（問題）
問題9.8

• 次の行列式を計算せよ．
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3 5 1 2 −1
2 6 0 9 1
0 0 7 1 2
0 0 3 2 5
0 0 0 0 3

3 5 1 2 −1
2 6 0 9 1
0 0 7 1 2
0 0 3 2 5
0 0 0 0 3

=
3 5
2 6

7 1 2
3 2 5
0 0 3

=
3 5
2 6

7 1
3 2

3 = 264



余因子展開（の特別な場合）
• 前回の定理8.9をもう一度見てみる．
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定理9.9
𝑎11 𝑎12 ⋯ 𝑎1𝑛
0 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
0 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

= 𝑎11

𝑎22 ⋯ 𝑎2𝑛
⋮ ⋱ ⋮

𝑎𝑛2 ⋯ 𝑎𝑛𝑛

• 第1列は 𝑎11 以外が 0 となっている場合には，𝑎11 を外に出し，行
列式を小さくできる．

• 同様のことが他の要素についてもできないだろうか?

• 要素を移動させて，上記のような形にすればよい．



余因子
定義9.10

• 𝑛次正方行列 𝐴 = 𝑎𝑖𝑗 の第 𝑖 行と第 𝑗列を取り除いて得られる

𝑛 − 1 次正方行列を 𝐴𝑖𝑗 と書く．
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𝐴𝑖𝑗 =

𝑎11 ⋯ 𝑎1𝑗 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮ ⋮
𝑎𝑖1 ⋯ 𝑎𝑖𝑗 ⋯ 𝑎𝑖𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑗 ⋯ 𝑎𝑛𝑛

（赤字部分を除く）

• これらは 𝐴の余因子と呼ばれる．

𝑗列
↓

← 𝑖 行



余因子（例）
例9.11
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𝐴 =
3 1 −2
4 −3 0
2 6 5

とすれば，9個の余因子が考えられる．例えば

𝐴12 =
4 0
2 5

𝐴22 =
3 −2
2 5

𝐴31 =
1 −2
−3 0

例9.12

• 𝐴 = 𝑎𝑖𝑗 =
𝑎 𝑏
𝑐 𝑑

に対して，4つの余因子が考えられる．

𝐴11 = 𝑑 𝐴12 = 𝑐 𝐴21 = 𝑏 𝐴22 = 𝑎



余因子展開
定理9.13

• 𝑛次正方行列 𝐴 = 𝑎𝑖𝑗 に関して
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1. 𝐴 の第 𝑖 行に関する余因子展開として次が成り立つ．

𝐴 = −1 𝑖+1𝑎𝑖1 𝐴𝑖1 +⋯+ −1 𝑖+𝑛𝑎𝑖𝑛 𝐴𝑖𝑛

2. 𝐴 の第 𝑗列に関する余因子展開として次が成り立つ．

𝐴 = −1 1+𝑗𝑎1𝑗 𝐴1𝑗 +⋯+ −1 𝑛+𝑗𝑎𝑛𝑗 𝐴𝑛𝑗

3. また，𝑖 ≠ 𝑘 のとき

−1 𝑘+1𝑎𝑖1 𝐴𝑘1 +⋯+ −1 𝑘+𝑛𝑎𝑖𝑛 𝐴𝑘𝑛 = 0

4. また，𝑗 ≠ 𝑘 のとき

−1 1+𝑘𝑎1𝑗 𝐴1𝑘 +⋯+ −1 𝑛+𝑘𝑎𝑛𝑗 𝐴𝑛𝑘 = 0



余因子展開（証明）
• 𝑛次正方行列 𝐴 = 𝑎𝑖𝑗 の第 𝑖 行ベクトルを次のように 𝑛個に分解すると

𝑎𝑖1, 𝑎𝑖2, ⋯ , 𝑎𝑖𝑛 = 𝑎𝑖1, 0,0,⋯ , 0 + 0, 𝑎𝑖2, 0,⋯ , 0 + ⋯+ [0,0,⋯ , 𝑎𝑖𝑛]
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• 多重線形性（定理8.14）より

𝐴 =

𝑎11 ⋯ ⋯ ⋯ 𝑎1𝑛
⋮ ⋮
𝑎𝑖1 0 0 ⋯ 0

⋮ ⋮
𝑎𝑛1 ⋯ ⋯ ⋯ 𝑎𝑛𝑛

+

𝑎11 ⋯ ⋯ ⋯ 𝑎1𝑛
⋮ ⋮
0 𝑎𝑖2 0 ⋯ 0

⋮ ⋮
𝑎𝑛1 ⋯ ⋯ ⋯ 𝑎𝑛𝑛

+⋯+

𝑎11 ⋯ ⋯ ⋯ 𝑎1𝑛
⋮ ⋮
0 0 0 ⋯ 𝑎𝑖𝑛
⋮ ⋮

𝑎𝑛1 ⋯ ⋯ ⋯ 𝑎𝑛𝑛

• 交代性（定理8.12）を使い，①のそれぞれにおいて，行の入れ替えを 𝑖 − 1回と，列の入れ替えを
𝑗 − 1回繰り返し 𝑎𝑖𝑗 要素を左上に移動させる

𝑎11 ⋯ ⋯ ⋯ 𝑎1𝑛
⋮ ⋮
0 ⋯ 𝑎𝑖𝑗 ⋯ 0

⋮ ⋮
𝑎𝑛1 ⋯ ⋯ ⋯ 𝑎𝑛𝑛

= −1 𝑖−1

0 ⋯ 𝑎𝑖𝑗 ⋯ 0
𝑎11 ⋯ ⋯ ⋯ 𝑎1𝑛
⋮ ⋮

𝑎𝑛1 ⋯ ⋯ ⋯ 𝑎𝑛𝑛

= −1 𝑖+𝑗−2

𝑎𝑖𝑗 0 ⋯ 0
𝑎1𝑗 𝑎11 ⋯ 𝑎1𝑛
⋮ ⋮ ⋮

𝑎𝑛𝑗 𝑎𝑛1 ⋯ 𝑎𝑛𝑛

• 余因子の特別な場合（定理8.9）により，これは −1 𝑖+𝑗𝑎𝑖𝑗 𝐴𝑖𝑗 に等しいため，①は

⋯⋯①

𝐴 = −1 𝑖+1𝑎𝑖1 𝐴𝑖1 +⋯+ −1 𝑖+𝑛𝑎𝑖𝑛 𝐴𝑖𝑛

• 列に関する余因子展開も同様に示すことができる．（QED)

• また，𝐴 の 𝑖 行目を 𝑘 行目にコピーした行列を 𝐵 とすると，交代性（定理8.12）により 𝐵 = 0
であり，𝐵𝑘𝑗 = 𝐴𝑘𝑗 であるから，𝑘 行目に対して上記と同様にすると，

0 = 𝐵 = −1 𝑘+1𝑎𝑖1 𝐴𝑘1 +⋯+ −1 𝑘+𝑛𝑎𝑖𝑛 𝐴𝑘𝑛



余因子展開（例）
例9.14

• 第1行に関する余因子展開
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• 第2列に関する余因子展開

2 7 4
3 2 0
1 5 3

= 2
2 0
5 3

− 7
3 0
1 3

+ 4
3 2
1 5

= 12 − 63 + 52 = 1

2 7 4
3 2 0
1 5 3

= −7
3 0
1 3

+ 2
2 4
1 3

− 5
2 4
3 0

= −63 + 4 + 60 = 1

• 各項の符号に注意せよ．



余因子展開（問題）
問題9.15

• 第2行に関する余因子展開

18

• 第3行に関する余因子展開

2 7 4
3 2 0
1 5 3

= −3
7 4
5 3

+ 2
2 4
1 3

− 0
2 7
1 5

= −3 + 4 − 0 = 1

2 7 4
3 2 0
1 5 3

= 1
7 4
2 0

− 5
2 4
3 0

+ 3
2 7
3 2

= −8 + 60 − 51 = 1



余因子展開（問題）
問題9.16

• 第1列に関する余因子展開
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• 第3列に関する余因子展開

2 7 4
3 2 0
1 5 3

= 2
2 0
5 3

− 3
7 4
5 3

+ 1
7 4
2 0

= 12 − 3 − 8 = 1

2 7 4
3 2 0
1 5 3

= 4
3 2
1 5

− 0
2 7
1 5

+ 3
2 7
3 2

= 52 − 0 − 51 = 1



余因子行列
定義9.17

• 𝑛次正方行列 𝐴 = 𝑎𝑖𝑗 に対して
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𝑎𝑖𝑗
∗ = −1 𝑖+𝑗 𝐴𝑗𝑖

とおき，余因子という（𝑎𝑖𝑗
∗ と 𝐴𝑗𝑖 の添え字が逆になっていることに注

意）．

• 𝑛次正方行列

ሚ𝐴 = 𝑎𝑖𝑗
∗

とおき，𝐴の余因子行列という．



余因子行列（例）
例9.18

• 𝐴 =
𝑎 𝑏
𝑐 𝑑

に対して
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であるから

ሚ𝐴 =
𝑎11
∗ 𝑎12

∗

𝑎21
∗ 𝑎22

∗ =
𝑑 −𝑏
−𝑐 𝑎

𝑎11
∗ = −1 1+1 𝐴11 = 𝑑

𝑎12
∗ = −1 1+2 𝐴21 = −𝑏

𝑎21
∗ = −1 2+1 𝐴12 = −𝑐

𝑎22
∗ = −1 2+2 𝐴22 = 𝑎



余因子行列（例）
例9.19

• 𝐴 =
1 2 3
1 1 −1
4 1 5

に対して
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𝑎11
∗ = −1 1+1 1 −1

1 5
= 6 𝑎12

∗ = −1 1+2 2 3
1 5

= −7

𝑎13
∗ = −1 1+3 2 3

1 −1
= −5 𝑎21

∗ = −1 2+1 1 −1
4 5

= −9

𝑎22
∗ = −1 2+2 1 3

4 5
= −7 𝑎23

∗ = −1 2+3 1 3
1 −1

= 4

𝑎31
∗ = −1 3+1 1 1

4 1
= −3 𝑎32

∗ = −1 3+2 1 2
4 1

= 7

𝑎33
∗ = −1 3+3 1 2

1 1
= −1

なので，𝐴の余因子行列は

ሚ𝐴 = 𝑎𝑖𝑗
∗ =

6 −7 −5
−9 −7 4
−3 7 −1



余因子行列（定理）
定理9.20

• 𝑛次正方行列 𝐴の余因子行列 ሚ𝐴 に関して
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𝐴 ሚ𝐴 = ሚ𝐴 𝐴 = 𝐴 𝐸𝑛

が成り立つ．

例9.21

• 𝐴 =
𝑎 𝑏
𝑐 𝑑

の余因子行列は ሚ𝐴 =
𝑑 −𝑏
−𝑐 𝑎

であるので，

𝐴 ሚ𝐴 =
𝑎 𝑏
𝑐 𝑑

𝑑 −𝑏
−𝑐 𝑎

=
𝑎𝑑 − 𝑏𝑐 0

0 𝑎𝑑 − 𝑏𝑐
= 𝐴 𝐸2

ሚ𝐴 𝐴 =
𝑑 −𝑏
−𝑐 𝑎

𝑎 𝑏
𝑐 𝑑

=
𝑎𝑑 − 𝑏𝑐 0

0 𝑎𝑑 − 𝑏𝑐
= 𝐴 𝐸2



余因子行列（証明）
• 𝐴 = 𝑎𝑖𝑗 について余因子展開（定理9.11）より，𝑖 ≠ 𝑗に対して
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𝐴 = −1 𝑖+1𝑎𝑖1 𝐴𝑖1 +⋯+ −1 𝑖+𝑛𝑎𝑖𝑛 𝐴𝑖𝑛 = 𝑎𝑖1𝑎1𝑖
∗ +⋯+ 𝑎𝑖𝑛𝑎𝑛𝑖

∗ = ෍

𝑘=1

𝑛

𝑎𝑖𝑘𝑎𝑘𝑖
∗

0 = −1 𝑗+1𝑎𝑖1 𝐴𝑗1 +⋯+ −1 𝑗+𝑛𝑎𝑖𝑛 𝐴𝑗𝑛 = 𝑎𝑖1𝑎1𝑗
∗ +⋯+ 𝑎𝑖𝑛𝑎𝑛𝑗

∗ = ෍

𝑘=1

𝑛

𝑎𝑖𝑘𝑎𝑘𝑗
∗

• したがって

𝐴 ሚ𝐴 = 𝑎𝑖𝑗 𝑎𝑖𝑗
∗ = ෍

𝑘=1

𝑛

𝑎𝑖𝑘𝑎𝑘𝑗
∗ =

𝐴 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ |𝐴|

= 𝐴 𝐸𝑛

• ሚ𝐴 𝐴 = 𝐴 𝐸𝑛 についても同様．（QED)



余因子行列（例）
例9.22

• 𝐴 =
1 2 3
1 1 −1
4 1 5

の行列式は 𝐴 = −21，
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ሚ𝐴 =
6 −7 −5
−9 −7 4
−3 7 −1

であり

1 2 3
1 1 −1
4 1 5

6 −7 −5
−9 −7 4
−3 7 −1

=
−21 0 0
0 −21 0
0 0 −21

= −21𝐸3

6 −7 −5
−9 −7 4
−3 7 −1

1 2 3
1 1 −1
4 1 5

=
−21 0 0
0 −21 0
0 0 −21

= −21𝐸3

余因子行列は



余因子行列（定理）
定理9.23

• 𝑛次正方行列 𝐴が正則である必要十分条件は 𝐴 ≠ 0 であり，こ
のとき逆行列は

26

𝐴−1 =
1

𝐴
ሚ𝐴

で与えられる．

• 一般に，逆行列を計算するのには掃き出し法を用いるのが簡単で
ある（第6回講義）．

• しかし，理論的に逆行列の存在を保証したい場合なのでは，定理
9.21が便利である．



余因子行列（定理9.23）の証明
• 十分性は定理9.20から示すことができる．つまり

27

𝐴 ሚ𝐴 = ሚ𝐴 𝐴 = 𝐴 𝐸𝑛

より

𝐴
1

𝐴
ሚ𝐴 =

1

𝐴
ሚ𝐴 𝐴 = 𝐸𝑛

• 逆に，逆行列が存在すると仮定すると，𝐴 𝐴−1 = 𝐸𝑛 であるから，両
辺の行列式を考えて

1 = 𝐸𝑛 = 𝐴 𝐴−1 = 𝐴 𝐴−1

• 特に 𝐴 ≠ 0 である．（QED)



余因子行列と逆行列
例9.24

• 𝐴 =
𝑎 𝑏
𝑐 𝑑

の余因子行列は ሚ𝐴 =
𝑑 −𝑏
−𝑐 𝑎

であり
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𝐴 ሚ𝐴 =
𝑎 𝑏
𝑐 𝑑

𝑑 −𝑏
−𝑐 𝑎

=
𝑎𝑑 − 𝑏𝑐 0

0 𝑎𝑑 − 𝑏𝑐
= 𝐴 𝐸2

ሚ𝐴 𝐴 =
𝑑 −𝑏
−𝑐 𝑎

𝑎 𝑏
𝑐 𝑑

=
𝑎𝑑 − 𝑏𝑐 0

0 𝑎𝑑 − 𝑏𝑐
= 𝐴 𝐸2

であることから，逆行列の公式

𝐴−1 =
1

𝑎𝑑 − 𝑏𝑐
𝑑 −𝑏
−𝑐 𝑎

を再現することができる．



余因子行列と逆行列
例9.25

• 𝐴 =
1 2 3
1 1 −1
4 1 5

の余因子行列は ሚ𝐴 =
6 −7 −5
−9 −7 4
−3 7 −1

であった．
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• 𝐴の逆行列は

𝐴−1 =
1

𝐴
ሚ𝐴 =

1

−21

6 −7 −5
−9 −7 4
−3 7 −1



クラメルの公式
定理9.26

• 連立一次方程式
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ቐ
𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1

⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

の解は，次のように行列式を使って書くことができる．

𝑥𝑖 =

𝑎11 ⋯ 𝑎1 𝑖−1 𝑏1 𝑎1 𝑖+1 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛 𝑖−1 𝑏𝑛 𝑎𝑛 𝑖+1 ⋯ 𝑎𝑛𝑛
𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎1𝑛 ⋯ 𝑎𝑛𝑛

• 分母は係数行列の行列式であり，分子は，係数行列の 𝑖 列目を定
数ベクトルで置き換えたものである．



クラメルの公式（定理9.26）の証明
• 係数行列を 𝐴 = 𝒂1, ⋯ , 𝒂𝑛 ，変数ベクトルを 𝒙 = 𝑡 𝑥1, ⋯ , 𝑥𝑛 ，定数ベクト
ルを 𝒃 とすると，方程式は 𝐴 𝒙 = 𝒃 と書くことができる．
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𝐴𝑖 = 𝒂1, ⋯ , 𝒃,⋯ , 𝒂𝑛

• 𝐴の 𝑖 列目を 𝑏 で置き換えた行列を 𝐴𝑖 とすると，

= 𝒂1, ⋯ , 𝐴 𝒙,⋯ , 𝒂𝑛

= 𝒂1, ⋯ ,෍

𝑖=1

𝑛

𝒂𝑖𝑥𝑖 , ⋯ , 𝒂𝑛

=෍

𝑖=1

𝑛

𝑥𝑖 𝒂1, ⋯ , 𝒂𝑖, ⋯ , 𝒂𝑛

= 𝑥𝑖 𝒂1, ⋯ , 𝒂𝑖, ⋯ , 𝒂𝑛

= 𝑥𝑖 𝐴

∴ 𝑥𝑖 =
𝐴𝑖
𝐴

（𝐴 𝒙 = 𝒃 だから）

（𝐴 𝒙 を展開）

（多重線形性）

（交代性により 𝑖 だけが残る．）

（QED）



余因子行列（問題）
問題9.27

• 次の行列が正則かどうか判定し，正則の場合には余因子行列を計
算することで逆行列を求めよ．

32

𝐴 =
1 0 0
2 0 −1
−1 5 4

𝐵 =
0 1 2
2 0 −1
2 1 1

𝐶 =

0 1 0 0
1 0 0 −1
0 −1 1 0
−1 0 0 0



余因子行列（問題）
• 𝐴の行列式は，第1行に関して余因子展開すると

33

𝐴 =
1 0 0
2 0 −1
−1 5 4

=
0 −1
5 4

= 5

であるから，𝐴 は正則である．逆行列は

ሚ𝐴 =
5 0 0
−7 4 1
10 −5 0

𝐴−1 =
1

5

5 0 0
−7 4 1
10 −5 0

• 𝐵 の行列式は，第1列に関して余因子展開すると

𝐵 =
0 1 2
2 0 −1
2 1 1

= −2
1 2
1 1

+ 2
1 2
0 −1

= 2 − 2

であるから，𝐵 は正則ではない．

= 0



余因子行列（問題）
• 𝐶 の行列式は，第3列に関して余因子展開すると
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𝐶 =

0 1 0 0
1 0 0 −1
0 −1 1 0
−1 0 0 0

であるから，𝐶 は正則である．

=
0 1 0
1 0 −1
−1 0 0

= −
1 −1
−1 0

= 1

• 余因子行列の計算は面倒だが，結果だけを書いておくと

ሚ𝐶 = 𝐶−1 =

0 0 0 −1
1 0 0 0
1 0 1 0
0 −1 0 −1

• 実際に逆行列になっていることを確認せよ．



まとめ
• ブロック行列

• 余因子展開

• 余因子行列
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