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今日の内容
• ベクトルの集合 𝑆の性質を調べる．
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• 具体的には，𝑆 がどのくらい大きいのか，また 𝑆 には無駄があるの
か，の2つの観点から考察する．

• 十分大きく，無駄のない集合は基底と呼ばれ，ベクトル空間の解析
で重要な概念である．

1.一次結合，一次独立/従属

2.基底，次元



一次結合
• 以下では 𝑉 をベクトル空間とする．
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定義11.1

• ベクトル 𝒗1, … , 𝒗𝑘 ∈ 𝑉 の一次結合（線形結合）とは，あるスカラー
𝑎1, … , 𝑎𝑘 ∈ ℝ に対して

𝑎1 𝒗1 +⋯+ 𝑎𝑘 𝒗𝑘

の形のベクトルをいう．

• 慣れないうちは，𝑉 = ℝ𝑛 と考えて差し支えない．



一次結合（例）
例11.2

•
2
1
,
−1
3

∈ ℝ2 の一次結合は次の形のベクトル
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𝑎1
2
1
+ 𝑎2

−1
3

•
2
1
,
6
3

∈ ℝ2 の一次結合は次の形のベクトル

𝑎1
2
1
+ 𝑎2

6
3

= 𝑎1 + 3𝑎2
2
1

=
2𝑎1 − 𝑎2
𝑎1 + 3𝑎2

=
2𝑎1 + 6𝑎2
𝑎1 + 3𝑎2



一次結合（例）
例11.3

• ℝ2 の任意のベクトルは 𝒆1, 𝒆2 の一次結合である．
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= 𝑥 𝒆1 + 𝑦 𝒆2

• より一般に，ℝ𝑛 の任意のベクトルは，𝑒1, ⋯ , 𝑒𝑛 の一次結合である．

• 実際

𝑥
𝑦 = 𝑥

1
0
+ 𝑦

0
1

• 実際

𝑥1
𝑥2
⋮
𝑥𝑛

= 𝑥1 𝒆1 + 𝑥2 𝒆2 +⋯+ 𝑥𝑛 𝒆𝑛



張る空間
定義11.4

• ベクトル 𝒗1, … , 𝒗𝑘 ∈ 𝑉 に対して，それらの一次結合全体の集合
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を 𝒗1, … , 𝒗𝑘 が張る（生成する）空間という．

• ℝ 𝒗1, … , 𝒗𝑘 ⊂ 𝑉 は 𝑉 の部分空間になる．

ℝ 𝒗1, … , 𝒗𝑘 = σ𝑖=1
𝑘 𝑎𝑖 𝒗𝑖 𝑎𝑖 ∈ ℝ

• 特にベクトル空間になる．



張る空間
定義11.5

• ベクトル 𝒗1, … , 𝒗𝑘 ∈ 𝑉 が 𝑉 を張る（生成する）とは
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が成立することをいう．

• 「𝒗1, ⋯ , 𝒗𝑘 が 𝑉 を張る」とは，𝑉のベクトルを表現するのに十分たく
さんベクトルがあるということである．

ℝ 𝒗1, … , 𝒗𝑘 = 𝑉



張る空間（例）
例11.6

• ベクトル 𝒆1, 𝒆2, 𝒆3 ∈ ℝ3 を考える．
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𝒆2 −
2

3
𝒆2 𝒆2

3

2
𝒆2

• ℝ 𝒆1, 𝒆2

𝒆2
𝒆1

𝒆2
𝒆1

−𝒆1 − 𝒆2 1

2
𝒆1 + 𝟐𝒆2

𝒆1 + 𝒆2

• ℝ 𝒆2 , ℝ −
2

3
𝒆2 , ℝ 𝒆2,

3

2
𝒆2 は 𝑦 軸

, ℝ 𝒆1, 𝒆2, −𝒆1 − 𝒆2 , ℝ 𝒆1 + 𝒆2,
1

2
𝒆1 + 2𝒆2 は 𝑥𝑦 平面



張る空間（例）
例11.7

• ベクトル 𝒆1, 𝒆2, 𝒆3 ∈ ℝ3 を考える．
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𝒆2
𝒆1

𝒆3−𝒆1 − 𝒆2

1

2
𝒆1 + 𝒆2

𝒆1 + 𝒆2

𝒆3 𝒆2 + 𝒆3
𝒆1 + 𝒆3

𝒆1 + 𝒆2

• ℝ⟨𝒆1, 𝒆2, 𝒆3 ⟩, ℝ⟨𝒆1, 𝒆2, −𝒆1 − 𝒆2, 𝒆3 ⟩ , ℝ 𝑒1 + 𝑒2,
1

2
𝑒1 + 2𝑒2, 𝑒3

ℝ 𝑒1 + 𝑒2, 𝑒2 + 𝑒3, 𝑒1 + 𝑒3 などは全て ℝ3 を張る．



張る空間（問題）
問題11.8

• 次が成立することを示せ．
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3
2
−2

1
1
1

ℝ
1
1
1
,
3
2
−2

=
𝑥
𝑦
𝑧

4𝑥 − 5𝑦 + 𝑧 = 0 ⊂ ℝ3



張る空間（解説）
• 定義より2つのベクトルが張る空間は
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𝑥
𝑦
𝑧

= 𝑠
1
1
1
+ 𝑡

3
2
−2

=
𝑠 + 3𝑡
𝑠 + 2𝑡
𝑠 − 2𝑡

の形のベクトル全体である．

𝑥 = 𝑠 + 3𝑡,  𝑦 = 𝑠 + 2𝑡,  𝑧 = 𝑠 − 2𝑡

• まず，𝑠 = 𝑥 − 3𝑡 であるから

𝑦 = 𝑥 − 𝑡,  𝑧 = 𝑥 − 5𝑡

• 𝑡 = 𝑥 − 𝑦 であるから

𝑧 = −4𝑥 + 5𝑦

• つまり

4𝑥 − 5𝑦 + 𝑧 = 0

つまり



一次独立・一次従属
定義11.9

• ベクトル 𝒗1, … , 𝒗𝑘 ∈ 𝑉 が一次独立（線形独立）であるとは
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෍

𝑖=1

𝑘

𝑎𝑖 𝒗𝑖 = 𝟎 ⟹ 𝑎1 = ⋯ = 𝑎𝑘 = 0

が成り立つことである．

• 一次独立でないとき，一次従属（線形従属）であるという．

• 𝑎1 = ⋯ = 𝑎𝑘 = 0 であれば σ𝑖=0
𝑘 𝑎𝑖 𝒗𝑖 = 0は当然成り立つ．

• これを自明な関係という．

• ベクトル 𝒗1, ⋯ , 𝒗𝑘 が一次独立であるとは，これらの関係に非自明

な関係がない，つまり「余分なベクトルがない」ということを意味して
いる．



一次独立・一次従属
• ベクトル 𝒖, 𝒗 ∈ ℝ2 が一次独立であるとは
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を意味する．

• 実際，定義を解読すると

「𝒖, 𝒗が共に零ベクトルでなく，かつ互いに平行でない関係」

「𝒖, 𝒗の係数 𝑎, 𝑏 がそれぞれ 0のときに限り 𝑎 𝒖 + 𝑏 𝒗 = 0 となる」

である．

• つまり「 𝒖, 𝒗の係数 𝑎, 𝑏 が 0 でない限り，足し合わせたものが 𝟎
に戻ることは決して無い．」

• 実は ℝ2 上の3つ以上のベクトルは一次従属となる．



一次独立・一次従属（例）
例11.9

• ベクトル 𝒗1 =
1
1
と 𝒗2 =

1
−1

は一次独立である．
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• 実際

𝑎1𝒗1 + 𝑎2𝒗2 =
𝑎1 + 𝑎2
𝑎1 − 𝑎2

= 𝟎

は，𝑎1 = 𝑎2 = 0 を意味する．

• 一方，ベクトル 𝒘1 =
1
1
と 𝒘2 =

2
2
は一次従属である．

• 実際，2𝒘1 −𝒘2 = 0 なる非自明な関係が存在する．



一次独立・一次従属
例11.10

• ベクトル 𝒆1, 𝒆2, 𝒆3 ∈ ℝ3 は一次独立である．

15

• 実際

𝑎1𝒆1 + 𝑎2𝒆2 + 𝑎3𝒆3 =

𝑎1
𝑎2
𝑎3

= 𝟎

は，𝑎1 = 𝑎2 = 𝑎3 = 0 を意味する．

• ベクトル 𝒆1, 𝒆2, −𝒆1 − 𝒆2 ∈ ℝ2 は一次従属である．

• 実際

𝒆1 + 𝒆2 + (−𝒆1 − 𝒆2) = 𝟎

なる非自明な関係式が存在する（𝑎1 = 𝑎2 = 𝑎3 = 1）．

• それでは，𝑎 ≠ 0, 𝑏 ≠ 0のとき，𝒆1, 𝒆2, −𝑎 𝒆1 − 𝑏 𝒆2 ∈ ℝ2 は一次
独立であろうか?



一次独立・一次従属（例）
例11.11

• ベクトル 𝒗1 =
3
1
2

, 𝒗2 =
2
1
1

, 𝒗3 =
1
2
−1

は一次従属である．
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• 実際

3𝒗1 − 5𝒗2 + 𝒗3 = 𝟎

なる非自明な関係が存在する．

• 一方で，𝒗1, 𝒗2, 𝒗3 のどの2つのベクトルも一次独立である．

と同値であり，𝑎1 = 𝑎2 = 0が唯一の解である．

• 例えば，𝑎1 𝒗1 + 𝑎2 𝒗2 = 𝟎は

3𝑎1 + 2𝑎2 = 0,  𝑎1 + 𝑎2 = 0,  2𝑎1 + 𝑎2 = 0



一次独立・一次従属
• ベクトル 𝒗1, 𝒗2, 𝒗3 ∈ ℝ3 が一次独立であるための必要十分条件は

17

• つまり，どの2つのベクトルが張る平面を考えても，残りのベクトル
はその上にない（𝒗1, 𝒗2 が特別なわけではない）．

「𝒗1, 𝒗2 が平面を張り，かつ 𝒗3 がその平面上にないこと」

• 実際，𝒗1, 𝒗2, 𝒗3 が一次従属とすれば，非自明な関係式

と書くことができるので，𝒗3 は平面 ℝ 𝒗1, 𝒗2 上にある．

𝑎1 𝒗1 + 𝑎2 𝒗2 + 𝑎3 𝒗3 = 0

が存在する．

𝒗3 = −
1

𝑎3
𝑎1 𝒗1 + 𝑎2 𝒗2

例えば，𝑎3 ≠ 0 であれば



一次独立・一次従属（発展）
例11.12

• ベクトル空間 𝑉 = ℝ 𝑥 2 のベクトル
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1,  𝑥,  𝑥2

は一次独立である．

1858,  1 − 2𝑥 + 3𝑥2,  𝜋 − 𝑒 𝑥2

も一次独立である．

• 一方で

1 + 𝑥,  𝑥 + 𝑥2,  2 + 3𝑥 + 𝑥2

は一次従属である．

2 1 + 𝑥 + 𝑥 + 𝑥2 − 2 + 3𝑥 + 𝑥2 = 0

実際，非自明な関係が存在する：



一次独立・一次従属（問題）
問題11.13

• 次のベクトルは一次独立か一次従属か調べよ．
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(a) 
1
2
,
5
10

(b) 
1
2
,
2
3

(c) 
1
2
,
2
1
,
−3
−3

(d) 
1
1
1
,
0
1
1
,
0
0
1

(e) 
1
1
1
,
6
4
−4

,
5
4
0



行列の階数とベクトルの一次独立性
• 行列の階数とベクトルの一次独立性に関する重要な定理を紹介す
る．
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定理11.14

• 𝑚 × 𝑛行列 𝐴 に対して，以下は等しい

1. 𝐴の階数 rank𝐴

2. 𝐴の列ベクトルの一次独立なものの最大個数

3. 𝐴の行ベクトルの一次独立なものの最大個数



行基本変形と行ベクトルの独立性
定理11.15

• 𝑚 × 𝑛行列 𝐴 に対して，行基本変形を行っても，行ベクトルの独立なものの最大
個数は変わらない．
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（証明）3つの行基本変形について考える．

• 𝐴の行ベクトルを 𝒂1, 𝒂2, ⋯ , 𝒂𝑚 とする．

• 𝐴の 𝑖行目を 𝑐倍した場合，
𝑥𝑖1𝒂𝑖1 +⋯+ 𝑥𝑖𝒂𝑖 +⋯+ 𝑥𝑖𝑘𝒂𝑖𝑘 = 𝟎

と
𝑥𝑖1𝒂𝑖1 +⋯+ 𝑥𝑖

′ 𝑐𝒂𝑖 +⋯+ 𝑥𝑖𝑘𝒂𝑖𝑘 = 𝟎

が同値であるから，独立なものの最大個数に変化はない．

• 𝐴の 𝑖 行と 𝑗行を入れ替えても，行ベクトル全体としては変化がないため，独立なものの最大
個数に変化はない．

• 𝐴の 𝑖行目を 𝑐倍したものを 𝑗 行目に加える場合，
𝑥𝑖1𝒂𝑖1 +⋯+ 𝑥𝑗𝒂𝑗 +⋯+ 𝑥𝑖𝑘𝒂𝑖𝑘 = 𝟎

と

𝑥𝑖1
′ 𝒂𝑖1 +⋯+ 𝑥𝑗

′ 𝒂𝑗 + 𝑐𝒂𝑖 +⋯+ 𝑥𝑖𝑘
′ 𝒂𝑖𝑘 = 𝟎

は，𝒂𝑖 が 𝒂𝑖1 , ⋯ , 𝒂𝑖𝑘 に含まれている場合には，変形すれば上記の式と同じになるし，含まれ

ていない場合には，𝒂𝑖1 , ⋯ , 𝒂𝑖𝑘 に従属する場合で，その場合も 𝒂𝑖 を 𝒂𝑖1 ,⋯ , 𝒂𝑖𝑘 の一次結合

とし表すことができるので，上の式と同じになる．（QED）



行基本変形と正則行列
定理11.16

• 𝑚 × 𝑛行列 𝐴 に対して，行基本変形を用いて行列 𝐵 を得たとき，𝑚 次正則行列
𝑃 が存在し 𝐵 = 𝑃𝐴 となる．
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（証明）3つの行基本変形について考える．

• 𝐴の 𝑖 行と 𝑗 行を入れ替えることは，次の行列を左から掛けることに等しい．

1
⋱

0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0

⋱
1

𝑂

𝑂

𝑖 𝑗

𝑗

𝑖

• 𝐴の 𝑖 行を 𝑐 倍（𝑐 ≠ 0）することは，次の行列を左から掛けることに等しい．

1
⋱

𝑐
⋱

1

𝑂

𝑂

𝑖

𝑖
• 𝑖, 𝑖 成分が 𝑐
•他の対角成分は 1
•対角成分以外は 0

• 𝑖, 𝑖 成分と (𝑗, 𝑗)成分は 0
•他の対角成分は 1
• (𝑖, 𝑗)成分と (𝑗, 𝑖)成分が 1
•他の成分は 0



行基本変形と正則行列（つづき）
• 𝐴の 𝑖 行を 𝑐 倍して 𝑗 行に加えることは，次の行列を左から掛けることに等しい．
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1
⋱

1
⋮ ⋱
𝑐 ⋯ 1

⋱
1

𝑂

𝑂

𝑖 𝑗

𝑗

𝑖
• 𝑖, 𝑗 成分は 𝑐
•対角成分は 1
•対角成分以外は 0

• 行基本変形を繰り返すことは，これらの行列を左から次々の掛けていくことにあた
る．

• これらの行列はいずれも正則行列であり，これらを掛けて得られた 𝑃の正則行列
であり，𝐵 = 𝑃𝐴 となる．（QED)



行基本変形と列ベクトルの独立性
定理11.17

• 𝑚 × 𝑛行列 𝐴 に対して，行基本変形を行っても列ベクトルの独立なものの最大個
数は変わらない．
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（証明）

• 𝐴の列ベクトルを 𝒂1, 𝒂2, ⋯ , 𝒂𝑛 とする．𝐴 = 𝒂1, 𝒂2, ⋯ , 𝒂𝑛

• 定理11.23より，行基本変形は 𝐴 に左から正則行列 𝑃 を掛けたことに相当する．
𝑃𝐴 = 𝑃𝒂1, 𝑃𝒂2, ⋯ , 𝑃𝒂𝑛

• 𝑃𝐴の列ベクトル 𝑃𝒂1, 𝑃𝒂2, ⋯ , 𝑃𝒂𝑛 の一次独立・従属の式は

𝑥𝑖1 𝑃𝒂𝑖1 +⋯+ 𝑥𝑖𝑘 𝑃𝒂𝑖𝑘 = 𝟎

𝑃 𝑥𝑖1𝒂𝑖1 +⋯+ 𝑥𝑖𝑘𝒂𝑖𝑘 = 𝟎⟺

𝑃−1𝑃 𝑥𝑖1𝒂𝑖1 +⋯+ 𝑥𝑖𝑘𝒂𝑖𝑘 = 𝟎⟺

𝑥𝑖1𝒂𝑖1 +⋯+ 𝑥𝑖𝑘𝒂𝑖𝑘 = 𝟎⟺

なので，𝒂1, 𝒂2, ⋯ , 𝒂𝑛 のものと同値である．

• したがって，行基本変形を行っても列ベクトルの独立なものの最大個数は変わらな
い．（QED）



行列の階数とベクトルの一次独立性（証明）
定理11.14

• 𝑚 × 𝑛行列 𝐴 に対して，以下は等しい

1. 𝐴の階数 rank 𝐴

2. 𝐴の列ベクトルの一次独立なものの最大個数

3. 𝐴の行ベクトルの一次独立なものの最大個数
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（証明）

• 行基本変形を繰り返し，簡約階段行列にし，列を入れ替えると，𝐴 は次の形になる．

𝐵 =

1 ⋯ 0 𝑏1,𝑟+1 ⋯ 𝑏𝑛,𝑚
⋮ ⋱ ⋮ ⋮ ⋮
0 ⋯ 1 𝑏𝑟,𝑟+1 ⋯ 𝑏𝑟,𝑚
0 ⋯ 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 0 ⋯ 0

• rank 𝐴 = 𝑟 となるが，𝐵 の最初の 𝑟 個の行ベクトルから，一次独立なものの最大個数が 𝑟
以上であることが分かるが，残りの行ベクトルは 𝟎 であるから，これ以上の個数はありえない．

• 定理11.15と定理11.17より，これらの 𝐵 の一次独立な列または行ベクトルの最大個数 𝑟 は
𝐴のものと一致する．（QED）

• 𝐵 の最初の 𝑟 個の列ベクトルから，一次独立なものの最大個数は 𝑟 以上であることが分か
るが，𝑟 + 1 行目からの要素はすべて 0 なので，𝑟 を超えた一次独立な列ベクトルを作ること
はできない．



基底
定義11.18

• ベクトル 𝒗1, … , 𝒗𝑛 ∈ 𝑉 が基底であるとは
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1. 𝒗1, … , 𝒗𝑛 が一次独立

2. ℝ 𝒗1, … , 𝒗𝑛 = 𝑉

が成り立つことをいう．

• 雑に言えば

1. ベクトルの集合 𝒗1, … , 𝒗𝑛 が十分に小さく，余分なものが存在
しない．

2. それらが 𝑉 全体を生成するだけ十分大きい

ことを意味する．



一意表現定理
定理11.19

• 𝒗1, … , 𝒗𝑛 を 𝑉 の基底とする．
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• 直感的に言えば，「基底はベクトル空間の斜交座標系を与えてい
る」

• 任意のベクトル 𝒗 ∈ 𝑉 に対して，𝑎1, … , 𝑎𝑛 ∈ ℝが一意的に存在し
て

𝒗 =෍

𝑖=1

𝑛

𝑎𝑖 𝒗𝑖

𝑉

𝟎 𝒗1

𝒗2



一意表現定理（証明）
証明

• 𝒗1, … , 𝒗𝑛 が 𝑉 を張ることから，𝑎1, … , 𝑎𝑛 ∈ ℝが存在して 𝒗 =
σ𝑖=0
𝑛 𝑎𝑖 𝒗𝑖 となる．
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• このような一次結合の表示が2つあったとする．つまり

𝒗 =෍

𝑖=1

𝑛

𝑎𝑖 𝒗𝑖 =෍

𝑖=1

𝑛

𝑏𝑖 𝒗𝑖

• このとき

෍

𝑖=1

𝑛

𝑎𝑖 − 𝑏𝑖 𝒗𝑖 = 𝟎

であるが，𝒗1, ⋯ , 𝒗𝑛 が一次独立であることから，全ての 𝑖 に関して，
𝑎𝑖 − 𝑏𝑖 = 0．つまり表示は一意である．



標準基底
定義11.20

• ℝ𝑛 の基底
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𝒆1 =

1
0
⋮
0

,  𝒆2 =

0
1
⋮
0

,  …,  𝒆𝑛 =

0
0
⋮
1

は標準基底と呼ばれる．

• 任意のベクトル 𝒗 ∈ ℝ𝑛 はこれらの一次結合で一意に表される：

𝒗 =

𝑣1
𝑣2
⋮
𝑣𝑛

= 𝑣1

1
0
⋮
0

+ 𝑣2

0
1
⋮
0

+ ⋯+ 𝑣𝑛

0
0
⋮
1

=෍

𝑖=1

𝑛

𝑣𝑖 𝒆𝑖



基底
例11.21

• ベクトル
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𝒗1 =
1
1
0

,  𝒗2 =
0
1
1

, 𝒗3 =
1
0
1

は ℝ3 の基底である．

• 基底の取り方はたくさんあるが，共通する性質はなんであろうか?



次元
定理11.22（次元定理）

• 𝑉 をベクトル空間とする．
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• この定義は，「次元」＝「自由度」という我々の感覚とも一致している．

定義11.23

• 次元定理に現れる 𝑛 をベクトル空間 𝑉 の次元といい，dim𝑉 = 𝑛
と書く．

• 有限個のベクトルからなる基底が取れないとき，𝑉 は無限次元であ
るといい，dim𝑉 = ∞ と書く．

• 𝒗1, … , 𝒗𝑛 が 𝑉 の基底であれば，他の基底も 𝑛個のベクトルからな
る．



次元
例11.24

• ℝ𝑛 は標準基底 𝒆1, … , 𝒆𝑛 を持つので，ℝ
𝑛 は 𝑛次元である．
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• 一方で，ℝ 𝑥 𝑛 は 𝑛 + 1 次元ベクトル空間である．

例11.25

• ℝ 𝑥 は無限次元ベクトル空間である．実際，いくらでも次数が大き

い多項式が存在するので，基底として有限個の多項式を取ることは
不可能である．

dimℝ𝑛 = 𝑛

dimℝ 𝑥 𝑛 = 𝑛 + 1

例えば，ℝ 𝑥 1 の基底として，1, 𝑥 や 1858 + 𝑥, 6 + 21𝑥 が取れる．



まとめ
• 一次結合

• 一次独立・一次従属

• 基底

• 次元
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