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今日の内容
• 行列の対角化に関して解説する．

1.固有値問題の復習

2.行列の対角化

3.対角化の応用
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固有値問題
定義13.1

• 𝑛次正方行列 𝐴が定義する線形写像 𝑓𝐴: ℝ
𝑛 → ℝ𝑛 に対して，𝜆 ∈ ℝ

と 𝒗 ≠ 0 ∈ ℝ𝑛 が存在して
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𝑓𝐴 𝒗 = 𝜆 𝒗

となるとき，𝜆 を 𝐴の固有値，𝒗 を 𝐴の固有ベクトルという．

定義13.2

• 𝜆 ∈ ℝ を 𝐴の固有値とするとき，部分空間

𝑉 𝜆 = 𝒗 ∈ ℝ𝑛 𝑓𝐴 𝒗 = 𝜆 𝒗 ⊂ ℝ𝑛

を固有値 𝜆の固有空間という．𝟎 ∈ 𝑉 𝜆 に注意する．



固有多項式
定義13.3

• 𝑛次正方行列 𝐴 に対して，行列式
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𝜑𝐴 𝑡 = 𝑡 𝐸𝑛 − 𝐴

を 𝐴の固有多項式という．

定理13.4

• 線形写像 𝑓𝐴: ℝ
𝑛 → ℝ𝑛 に関して，次は同値である：

1. 𝜆 ∈ ℝは 𝐴の固有値

2. 𝜆 ∈ ℝは 𝐴の固有多項式の解，つまり 𝜑𝐴 𝜆 = 0



固有値問題
• 𝑛次正方行列 𝐴の固有値と固有空間を求めるには
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1. 固有多項式 𝜑𝐴 𝑡 の解

𝜑𝐴 𝑡 = 0

を求める．これらが固有値．

2. 各固有値 𝜆 に対して

𝜆 𝐸𝑛 − 𝐴 𝒗 = 𝟎

を解いて，固有ベクトル 𝒗 を求める．固有値 𝜆 に属する固有ベク
トル全体と 𝟎の集合が固有空間 𝑉 𝜆 ．



固有値問題（例）
例13.5

• 行列 𝐴 =
4 3
1 2

が定義する線形写像 𝑓𝐴: ℝ
2 → ℝ2 を考える．
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𝜑𝐴 𝑡 = 𝑡 𝐸2 − 𝐴 =
𝑡 − 4 −3
−1 𝑡 − 2

= (𝑡 − 1)(𝑡 − 5)

• 固有多項式は

• 固有値 𝑡 = 𝜆の固有ベクトル
𝑥
𝑦 ∈ ℝ2 を求めるには

𝜆 𝐸2 − 𝐴
𝑥
𝑦 = 𝟎

を解けばよい．

なので，固有値は 𝑡 = 1, 5 ．

• 𝑡 = 1の場合， 𝐸2 − 𝐴
𝑥
𝑦 =

−3 −3
−1 −1

𝑥
𝑦 = 𝟎より，𝑉 1 = ℝ

1
−1

．

• 𝑡 = 5の場合， 5 𝐸2 − 𝐴
𝑥
𝑦 =

1 −3
−1 3

𝑥
𝑦 = 𝟎 より，𝑉 5 = ℝ

3
1
．



対角化
定義13.6

• 𝑛次正方行列 𝐴 に対して，適当な 𝑛次正方行列 𝑃 を見つけて
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𝑃−1 𝐴 𝑃 =

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛

（対角行列）

の形にすることを対角化という．

• 行列は必ず対角化できるわけではないが，この講義では対角化可
能な行列だけを扱う（後述）．

• 行列の対角化には深い意味と強力な応用がある．



対角化の流れ
• 一般論を展開する前に具体的かつ基本的な場合を考察する．
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例13.7

• 𝒗1, 𝒗2 ∈ ℝ2 を固有値 1, 5に属する固有ベクトルとし，𝑃 = 𝒗1, 𝒗2 とすると

𝐴 𝑃 = 𝐴 𝒗1, 𝒗2 = 𝐴 𝒗1, 𝐴 𝒗2 = 𝒗1, 5 𝒗2 = 𝒗1, 𝒗2
1 0
0 5

= 𝑃
1 0
0 5

• 固有値 1, 5に属する固有ベクトル 𝒗1, 𝒗2 ∈ ℝ2 は一次独立であることが分
かるので，行列 𝑃 = 𝒗1, 𝒗2 の階数は 2 ，つまり正則である．

• 上記の式の両辺に左から 𝑃−1 を掛けることで

すなわち

𝑃−1 𝐴 𝑃 =
1 0
0 5

𝐴 𝑃 = 𝑃
1 0
0 5

となり，𝐴 を対角化できた．

• 行列 𝐴 =
4 3
1 2

の固有空間は 𝑉 1 = ℝ
1
−1

, 𝑉 5 = ℝ
3
1
．



対角化の流れ
• 実際，𝐴 =

4 3
1 2

の固有値 1, 5に属する固有ベクトルを並べて得

られる行列として，𝑃 =
1 3
−1 1

を考えれば，
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𝑃−1 𝐴 𝑃 =
1

4
1 −3
1 1

4 3
1 2

1 3
−1 1

=
1

4
1 −3
1 1

1 15
−1 5

=
1

4
4 0
0 20

=
1 0
0 5

が確認できる．

𝑃−1 =
1

4

1 −3
1 1

であり



対角化定理
定理13.8

• 𝑛次正方行列 𝐴の固有値 𝜆1, … , 𝜆𝑛 が相異なるとする．
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𝑃 = 𝒗1, … , 𝒗𝑛

で定義すると，𝑃は正則になり

𝑃−1 𝐴 𝑃 =

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛

• つまり 𝑃は 𝐴を対角化する．

• 𝑃が正則であることに関してはスライドの最後の補足を参照せよ．

• 𝒗𝑖 を固有値 𝜆𝑖 の属する固有ベクトルとする．

• 𝑛次正方行列 𝑃を

• 𝑃の取り方は一意ではない．

• 証明に関しては，直前の2次正方行列の議論がそのまま適用できる．



対角化（問題）
問題13.9

• 次の行列を対角化する行列 𝑃 と対角化後の行列を求めよ．

• また，実際に対角化できていることを確認せよ．
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𝐴 =
1 4
1 −2

𝐵 =
3 1
2 2

𝐶 =
7 −6
3 −2

• 前回の講義で固有空間はすでに計算した．



行列の冪乗
例13.10
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• まず 𝑃 =
1 3
−1 1

に対して，𝑃−1 𝐴 𝑃 =
1 0
0 5

であったので

𝑃−1 𝐴 𝑃 100 =
1 0
0 5

100

=
1 0
0 5100

• 左辺の積を具体的に書くと

𝑃−1 𝐴 𝑃 100 = 𝑃−1 𝐴 𝑃 𝑃−1 𝐴 𝑃⋯𝑃−1 𝐴 𝑃 = 𝑃−1 𝐴100 𝑃

• したがって

𝐴100 = 𝑃 𝑃−1 𝐴 𝑃 100 𝑃−1 = 𝑃
1 0
0 5100

𝑃−1

=
1 3
−1 1

1 0
0 5100

1

4
1 −3
1 1

=
1

4
1 + 3 ⋅ 5100 −3 + 3 ⋅ 5100

−1 + 5100 3 + 5100

• 対角化の重要な応用として，𝐴 =
4 3
1 2

に対して，𝐴100 を求める．



行列の冪乗（問題）
問題13.11
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• 行列 𝐴 =
1 4
1 −2

に関して，𝐴2, 𝐴3, 𝐴𝑛 を計算せよ．

• 𝐴2 =
5 −4
−1 8

, 𝐴3 =
1 28
7 −20

• 𝑃 =
1 4
−1 1

とおけば，𝑃−1 𝐴 𝑃 =
−3 0
0 2

であるから

𝑃−1 𝐴 𝑃 𝑛 =
−3 0
0 2

𝑛

=
−3 𝑛 0
0 2𝑛

• 左辺は 𝑃−1 𝐴𝑛 𝑃 であるから

𝐴𝑛 = 𝑃
−3 𝑛 0
0 2𝑛

𝑃−1

=
1 4
−1 1

−3 𝑛 0
0 2𝑛

1

5
1 −4
1 1

=
1

5

−3 𝑛 + 2𝑛+2 −4 −3 𝑛 + 2𝑛+2

− −3 𝑛 + 2𝑛 4 −3 𝑛 + 2𝑛



対角化の応用（発展）
定義13.12

• 次の漸化式で定義される数列 𝑎𝑖 はフィボナッチ数列と呼ばれる．
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𝑎𝑛+2 = 𝑎𝑛+1 + 𝑎𝑛,    𝑎0 = 0,    𝑎1 = 1

• 具体的に値を求めてみると

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,…

• 一般項 𝑎𝑛 を線形代数を使って求めてみる．

• 漸化式 𝑎𝑛+2 = 𝑎𝑛+1 + 𝑎𝑛 は，行列 𝐴 =
1 1
1 0

を使えば

𝑎𝑛+2
𝑎𝑛+1

=
1 1
1 0

𝑎𝑛+1
𝑎𝑛

= 𝐴
𝑎𝑛+1
𝑎𝑛

• したがって
𝑎𝑛
𝑎𝑛−1

= 𝐴
𝑎𝑛−1
𝑎𝑛−2 = 𝐴2

𝑎𝑛−2
𝑎𝑛−3

= ⋯ = 𝐴𝑛−1
𝑎1
𝑎0

• つまり，一般項を求めるには，行列 𝐴𝑛 を計算すればよい．



対角化の応用（発展）

• 固有多項式は 𝜑𝐴 𝑡 = 𝑡2 − 𝑡 − 1，𝐴の固有値は 𝜙± =
1± 5

2
．
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• 関係式 𝜑𝐴 𝜙± = 𝜙±
2 − 𝜙± − 1 = 0 を用いると

𝐴
𝜙±
1

=
𝜙± + 1

𝜙±
=

𝜙±
2

𝜙±
= 𝜙±

𝜙±
1

• つまり，固有空間は 𝑉 𝜙+ = ℝ
𝜙+
1

, 𝑉 𝜙− = ℝ
𝜙−
1

• 𝑃 =
𝜙+ 𝜙−
1 1

とすれば，𝑃−1 𝐴 𝑃 =
𝜙+ 0
0 𝜙−

• 詳細は省略するが，𝐴𝑛−1 が求まって

𝑎𝑛
𝑎𝑛−1

= 𝐴𝑛−1
1
0

=
1

5

𝜙+
𝑛 − 𝜙−

𝑛

𝜙+
𝑛−1 − 𝜙−

𝑛−1

• フィボナッチ数列の一般項は

𝑎𝑛 =
1

5
𝜙+
𝑛 − 𝜙−

𝑛



他分野への応用
• その他の重要な応用として

• 共分散行列の対角化（主成分分析）

• ヘッセ行列の対角化（多変数関数の極値の形状分析）

• 遷移行列の対角化（確率過程の時間発展分析）

• …

などがある．
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まとめ
• 固有値問題の復習

• 行列の対角化

• 対角化の応用
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固有ベクトルの一次独立性（補足）
• 定理13.8では 𝑛次正方行列 𝐴 に「相異なる固有値 𝜆1, … , 𝜆𝑛 が存在する」
ことを仮定した．

• これは常に成り立つとは限らず，対角化可能性の十分条件である．
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定理13.13

• 𝑛次正方行列 𝐴の相異なる固有値 𝜆1, … , 𝜆𝑠 に属する固有ベクトルを
𝒗1, … , 𝒗𝑠 とする．

• このとき 𝒗1, … , 𝒗𝑠 は線形独立である．

証明

• 帰納法で示す．

• まず，𝒗1 ≠ 0は一次独立なので成り立つ．

• 次に 𝒗1, … , 𝒗𝑟 は一次独立だが， 𝒗1, … , 𝒗𝑟 , 𝒗𝑟+1 は一次独立でないと仮
定する．このとき

𝒗𝑟+1 =෍

𝑖=1

𝑟

𝑐𝑖 𝒗𝑖 ∃𝑐𝑖 ∈ ℝ,  ∃𝑐𝑗 ≠ 0 (1)



固有ベクトルの一次独立性（補足）
• (1)の両辺に 𝐴 を掛けて 𝐴 𝒗𝑟+1 = σ𝑖=1

𝑟 𝑐𝑖 𝐴 𝒗𝑖，これより
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𝜆𝑟+1 𝒗𝑟+1 =෍

𝑖=1

𝑟

𝑐𝑖 𝜆𝑖 𝒗𝑖 (2)

• 一方で，(1)の両辺に 𝜆𝑟+1 を掛けて

𝜆𝑟+1 𝒗𝑟+1 =෍

𝑖=1

𝑟

𝑐𝑖 𝜆𝑟+1 𝒗𝑖 (3)

• (2)と(3)から

෍

𝑖=1

𝑟

𝑐𝑖 𝜆𝑟+1 − 𝜆𝑖 𝒗𝑖 = 𝟎

を得るが，固有値が異なることから， 𝜆𝑟+1 − 𝜆𝑖 ≠ 0，かつ ∃𝑐𝑗 ≠ 0 より，あ

る 𝒗𝑖 の係数は 0 ではない．

• これは 𝒗1, … , 𝒗𝑟 の一次独立性に矛盾する．


