情報数学 第4回 チューリング機械

萩野 達也

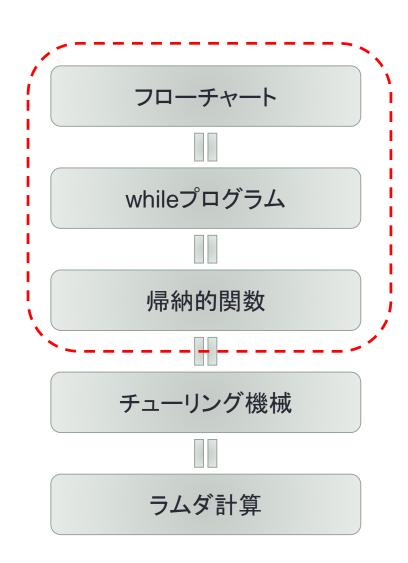
hagino@sfc.keio.ac.jp

Slides URL

https://vu5.sfc.keio.ac.jp/slide/

先週まで

- •計算
 - ・フローチャート
 - whileプログラム
 - 帰納的関数
 - 原始帰納的関数
 - 最小解演算子



有限状態オートマトン

- 有限状態オートマトン(Finite State Automaton) M
 - Q 状態の集合(有限個,空でない)
 - Σ 入力される文字の集合(有限個, 空でない)
 - δ 状態遷移関数. $\delta: Q \times \Sigma \to Q$
 - q_0 初期状態. $q_0 \in \Sigma$
 - F 終了状態の集合. Q の部分集合(空でもよい)
- $M = (Q, \Sigma, \delta, q_0, F)$

有限状態オートマトン例(1)

• 0 と1 からなる文字列の中に1 が偶数回出現したかどうかを 調べる有限状態オートマトン

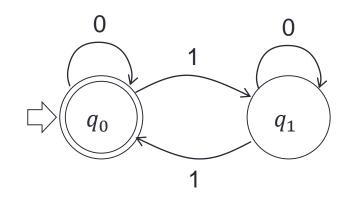
$$M_1 = (\{q_0, q_1\}, \{0,1\}, \delta_1, q_0, \{q_0\})$$

δ₁ を次のように定義

$$\delta_1$$
: $\{q_0, q_1\} \times \{0, 1\} \rightarrow \{q_0, q_1\}$

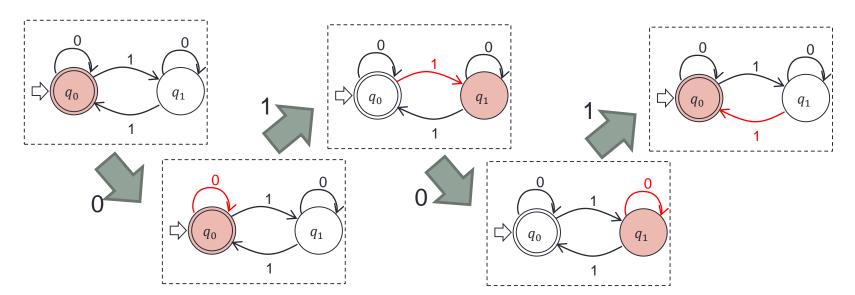
$$\begin{cases} \delta_1(q_0, 0) = q_0 \\ \delta_1(q_0, 1) = q_1 \\ \delta_1(q_1, 0) = q_1 \\ \delta_1(q_1, 1) = q_0 \end{cases}$$

δ_1	0	1
q_0	q_0	q_1
q_1	q_1	q_0



状態遷移

- *M*₁ に 0101 を入力することを考える.
 - 0. 初期状態 q_0
 - 1. 入力 0 により状態は $\delta_1(q_0,0)=q_0$
 - 2. 入力 1 により状態は $\delta_1(q_0,1) = q_1$
 - 3. 入力 0 により状態は $\delta_1(q_1,0) = q_1$
 - 4. 入力 1 により状態は $\delta_1(q_1,1) = q_0$
- $q_0 \in F$ なので M_1 は 0101 を受理(accept)する.



状態遷移(一般)

- 入力の Σ の文字を受け取るごとに状態が遷移する.
 - 0. 初期状態は常に q_0
 - 1. 最初の文字 a_1 を受け取ると、状態は $\delta(q_0, a_1) = q_1$ に遷移
 - 2. 2番目の文字 a_2 を受け取ると、状態は $\delta(q_1, a_2) = q_2$ に遷移
 - 3. 3番目の文字 a_3 を受け取ると、状態は $\delta(q_2, a_3) = q_3$ に遷移
 - i. i番目の文字 a_i を受け取ると、状態は $\delta(q_{i-1},a_i)=q_i$ に遷移
 - n. n番目の文字 a_n を受け取ると、状態は $\delta(q_{n-1},a_n)=q_n$ に遷移
- 有限状態オートマトン M は $q_n \in F$ であるとき, 文字列 $a_1 a_2 \cdots a_n$ を 受理する.

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_3} q_3 \xrightarrow{a_i} q_i \xrightarrow{a_n} q_n \in F$$

受理される言語

- 状態遷移関数 δ を文字列に拡張する.
 - $\delta(q, a_1 a_2 a_3 \cdots a_n) = \delta(\cdots \delta(\delta(\delta(q, a_1), a_2), a_3) \cdots, a_n)$
 - $\delta(q, \epsilon) = q$

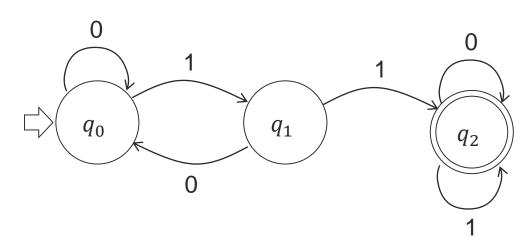
ただし. ϵ は空文字列を表す.

- ・有限状態オートマト M は次の時に、文字列 $a_1a_2\cdots a_n$ を受理する.
 - $\delta(q_0, a_1 a_2 \cdots a_n) \in F$
- 有限状態オートマトン $M = (Q, \Sigma, \delta, q_0, F)$ が受理する文字列の集合を, M が受理する言語という.
 - $L(M) = \{x \in \Sigma^* \mid \delta(q_0, x) \in F\}$

有限状態オートマトン例(2)

- ・次の有限状態オートマントンの状態遷移図を書きなさい.
 - $M_2 = (\{q_0, q_1, q_2\}, \{0,1\}, \delta_2, q_0, \{q_2\})$

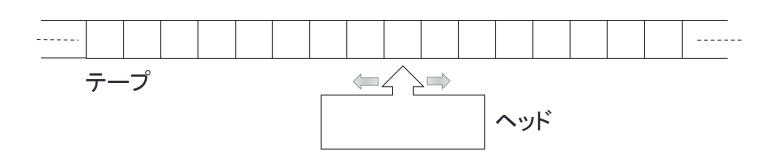
δ_2	0	1
q_0	q_0	q_1
q_1	q_0	q_2
q_2	q_2	q_2



・このオートマトンが受理する言語 $L(M_2)$ は何ですか?

チューリング機械

- アラン・チューリング(Alan Turing)
 - ・イギリスの数学者(1912年6月23日~1954年6月7日)
 - 「On Computable Numbers, with an Application to the Entscheidungsproblem」1936年5月28日
 - Entscheidungsproblem = 決定問題
 - The Entscheidungsproblem = 「与えられた論理式が証明可能かどうかを決定する手法はあるか」 ヒルベルトが1928年に出した問題.
- チューリング機械
 - 左右無限に長いテープ
 - テープ上のデータを読み書きし、左右に動くヘッド



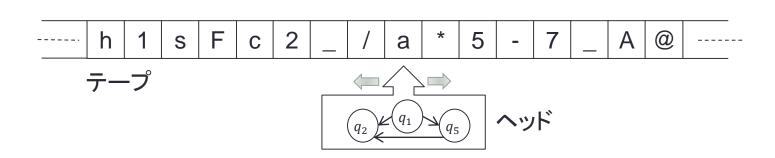
テープとヘッド

テープ

- 左右に無限に長いテープが1本ある。
- テープはマスに分けられている。
- マスには記号(文字)が書かれている。
- ・記号が書かれていない所は空白(という記号)が書かれている.

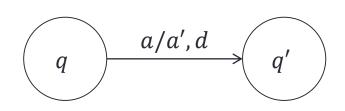
・ヘッド

- テープの情報を読み書きするヘッドが1つある.
- ヘッドはテープのどこかのマス上にあり、そのマスの記号を読み書きできる。
- 内部に状態を持つ.
- マスの記号と現在の状態から次の状態が決まる。
- ヘッドは右が左に1つずつ移動する.



形式的定義

- チューリング機械 M は3つの (A, Q, T) からなる:
 - ・テープ記号の有限集合 $A = \{a_0, a_1, \dots, a_{m-1}\}$
 - a₀ を空白を表す記号とし「_」を使う.
 - ・ ヘッドの内部状態の有限集合 $Q = \{q_0, q_1, \dots, q_{l-1}\}$
 - q₁ を初期状態,
 - q₀ を終了(停止)状態とする.
 - 遷移を表す関数 $T: Q \times A \rightarrow Q \times A \times \{L, R, N\}$
 - 内部状態が q で、現在のテープ記号が a のとき、
 - T(q,a) = (q',a',d) であれば,
 - 次の状態は q' となり,
 - テープ記号は *a* から *a'* に書き換え,
 - *d* = *L* ならば, ヘッドは左に1つ移動し,
 - *d* = *R* ならば, ヘッドは右に1つ移動し,
 - d = N ならば、ヘッドは移動せずに同じ場所にいる.

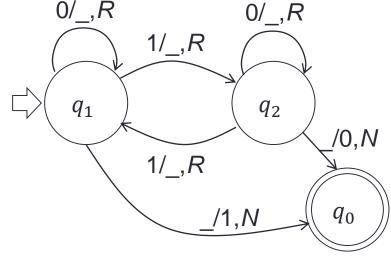


チューリング機械の例(1)

・偶数個の「1」がテープ上に書かれていれば「1」を書き、そうでなければ「0」を書いて停止する(もとの記号はテープから消す).

$$M_3 = (\{_, 0, 1\}, \{q_0, q_1, q_2\}, T_3)$$

T_3	_	0	1
q_1	$(q_0, 1, N)$	$(q_1,_,R)$	$(q_2,_,R)$
q_2	$(q_0,0,N)$	$(q_2,_,R)$	$(q_1,_,R)$



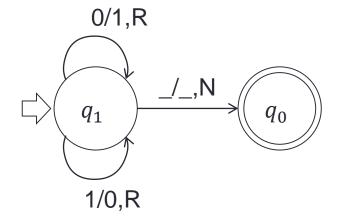
|--|

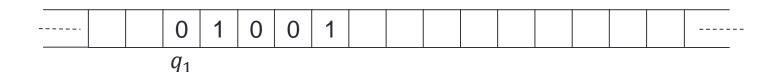
チューリング機械の例(2)

・テープ上の「1」と「0」を反転させるチューリング機械を作りなさい.

$$M_4 = (\{_, 0, 1\}, \{q_0, q_1\}, T_4)$$

T_4	_				0			1				
q_1	(,	,)	(,	,)	(,	,)

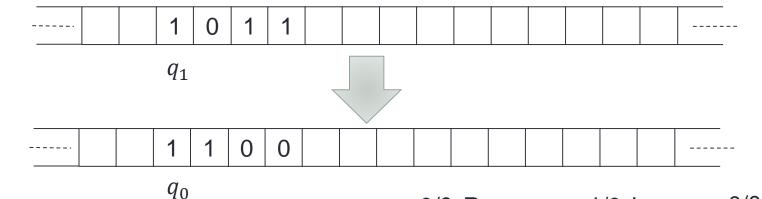




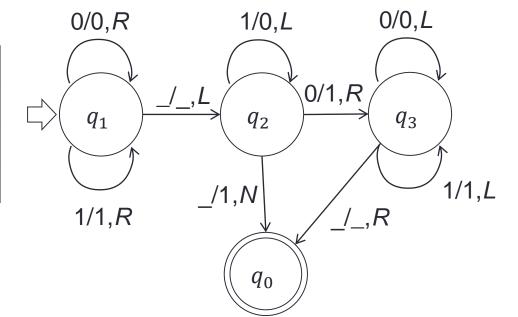
チューリング機械の例(3)

・テープ上の二進数の数字に1を加えるチューリング機械を作りなさい.

$$M_5 = (\{_, 0, 1\}, \{q_0, q_1, q_2, \cdots\}, T_5)$$

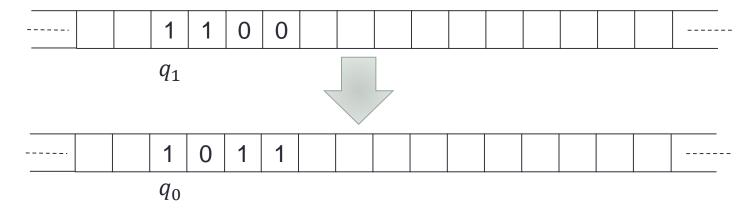


T_5	_	0	1		
q_1	$(q_2,_,L)$	$(q_1,0,R)$	$(q_1,1,R)$		
q_2	$(q_0,1,N)$	$(q_3,1,L)$	$(q_2,0,L)$		
q_3	$(q_0,_,R)$	$(q_3,0,L)$	$(q_3,1,L)$		



チューリング機械の例(4)

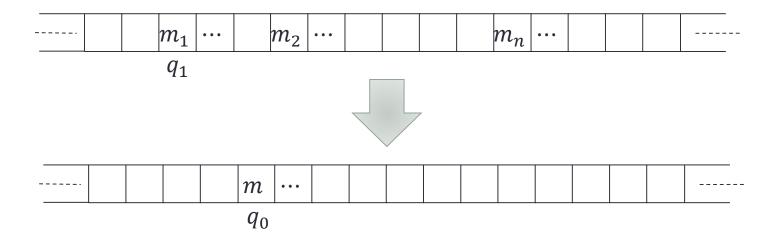
テープ上の二進数の数字から1を引くチューリング機械を作りなさい。
M₆ = ({_, 0,1}, {q₀, q₁, q₂, ··· }, T₆)



T_6	1	0	1			
q_1	(, ,)	(, ,)	(, ,)			
q_2	(, ,)	(, ,)	(, ,)			
q_3	(, ,)	(, ,)	(, ,)			

チューリング機械の計算

- チューリング機械 M が関数 $f: N^n \to N$ を計算するとは,
 - ・数字 m_1, m_2, \cdots, m_n をテープ上に空白で区切って書いておく.
 - ヘッドを左端にセットして M を開始する.
 - M が停止した時に、テープ上に $f(m_1, m_2, \cdots, m_n)$ の値が書かれる.

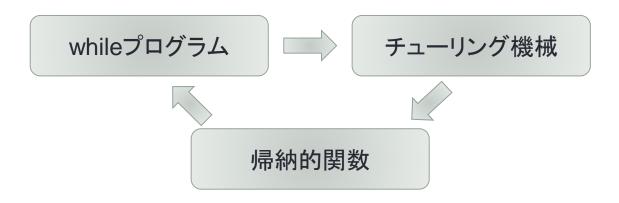


チューリング機械とプログラム

- ・チューリング機械は一般には停止しない.
 - ・計算する関数は全域的ではなく部分的

· 定理

- チューリング機械が計算する関数 $f: N^n \to N$ はwhileプログラムで計算できる.
- 帰納的関数 $f: \mathbb{N}^n \to \mathbb{N}$ はチューリング機械で計算することができる.



まとめ

- 有限状態オートマトン
 - 有限個の状態の集合
 - 状態遷移関数
- チューリング機械
 - 無限のテープとヘッド
- 計算
 - ・フローチャート
 - whileプログラム
 - 帰納的関数
 - チューリング機械