情報数学 第7回 ラムダ計算と計算可能性

萩野 達也

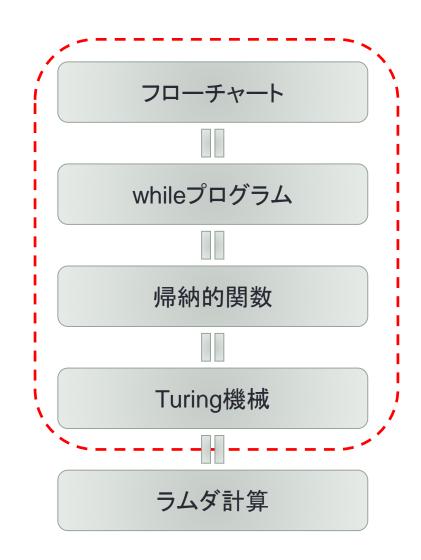
hagino@sfc.keio.ac.jp

スライドURL

https://vu5.sfc.keio.ac.jp/slide/

これまで

- 計算
 - ・フローチャート
 - whileプログラム
 - 帰納的関数
 - 原始帰納的関数
 - 最小解演算子
 - Turing機械
 - 決定不可能問題
 - ラムダ計算
 - 関数抽象
 - 関数適用



λ表現

- 部分関数 $f: N^n \to N$ の λ 表現 F とは:
 -

$$F[k_1][k_2] \dots [k_n] \stackrel{\alpha\beta}{\Rightarrow} [k]$$

ここで $[k_i]$ は、自然数 k_i の λ 表現(次に定義)

• $[f] \equiv F \ e f \ o \lambda 表現と呼ぶ.$

真偽と対のλ表現

真と偽のλ表現:

- [true] $\equiv \lambda x y \cdot x$
- [false] $\equiv \lambda x y. y$
- [true] $M N \stackrel{\alpha\beta}{\Rightarrow}$
- [false] $M N \stackrel{\alpha\beta}{\Rightarrow}$

2つの式の対のλ表現:

- $[M, N] \equiv \lambda x. x M N$
- $\pi_1 \equiv \lambda x. x[\text{true}]$
- $\pi_2 \equiv \lambda x. x$ [false]
- $\pi_1[M,N] \stackrel{\alpha\beta}{\Rightarrow}$
- $\pi_2[M,N] \stackrel{\alpha\beta}{\Rightarrow}$

自然数のλ表現

自然数のλ表現:

- $[0] \equiv \lambda x \ y. y$
- $[1] \equiv \lambda x \ y . x \ y$
- $[2] \equiv \lambda x \ y \cdot x(x \ y)$
- $[3] \equiv \lambda x \ y . \ x(x(x \ y))$: n• $[n] \equiv \lambda x \ y . \ x(x(\cdots(x \ y)\cdots))$

• 演算:

- [suc] $\equiv \lambda x \ y \ z \ y(x \ y \ z)$
- [add] $\equiv \lambda x \ y \ z \ w . x \ z(y \ z \ w)$
- [mul] $\equiv \lambda x y z w. x(y z) w$
- [pred] $\equiv \lambda x y z. x (\lambda u v. v(u y)) (\lambda a. z) (\lambda a. a)$
- [zero?] $\equiv \lambda x. x(\lambda x. [false])[true]$

λ表現での計算を試してみよう

```
• [\operatorname{suc}][2] \equiv (\lambda x \, y \, z. \, y(x \, y \, z))(\lambda x \, y. \, x(x \, y))
                  \alpha\beta \Rightarrow
                  \alpha\beta \Rightarrow
                   \equiv [3]
• [add][3][2] \equiv (\lambda x y z w. x z(y z w)) (\lambda x y. x(x(x y))) (\lambda x y. x(x y))
                  \alpha\beta \Rightarrow
                  \alpha\beta \Rightarrow
                  \alpha\beta \Rightarrow
                   \equiv [5]
```

帰納的関数

• 原始帰納的関数:

• 基本的関数

•
$$zero: N^0 \to N$$
 $zero() = 0$

•
$$suc: N \to N$$
 $suc(x) = x + 1$

•
$$\pi_i^n : N^n \to N$$
 $\pi_i^n(x_1, ..., x_n) = x_i$

・ 関数の合成

•
$$f(x_1, x_2, ..., x_n) = g(h_1(x_1, x_2, ..., x_n), ..., h_m(x_1, x_2, ..., x_n))$$

・原始帰納法による関数の定義

•
$$f(x_1, \dots, x_n, zero()) = g(x_1, \dots, x_n)$$

•
$$f(x_1, ..., x_n, suc(y)) = h(x_1, ..., x_n, y, f(x_1, ..., x_n, y))$$

帰納的関数:

- 最小解演算子
 - $f(x_1, ..., x_n) = \mu_y(g(x_1, ..., x_n, y) = 0)$

原始帰納的関数のλ表現

•基本的関数:

- $[zero] \equiv [0] \equiv \lambda x y. y$
- $[suc] \equiv \lambda x \ y \ z . \ y(x \ y \ z)$
- $[\pi_i^n] \equiv \lambda x_1 x_2 \cdots x_n x_i$

• 関数合成:

• $f(x_1, x_2, ..., x_n) = g(h_1(x_1, x_2, ..., x_n), ..., h_m(x_1, x_2, ..., x_n))$ のとき、

$$[f] \equiv \lambda x_1 \ x_2 \cdots \ x_n \cdot [g]([h_1]x_1 \ x_2 \cdots \ x_n) \cdots ([h_m]x_1 \ x_2 \cdots \ x_n)$$

• 例:

- $\operatorname{dsuc}(x) = \operatorname{suc}(\operatorname{suc}(x))$
- $[dsuc] \equiv \lambda x$. [suc]([suc]x)

原始帰納法

- ・単純化して、引数は2つとする.
 - f(x, zero()) = g(x)
 - f(x, suc(y)) = h(x, y, f(x, y))
- *F* ≡ [*f*] の構成:
 - F は次の性質を持たなくてはいけない: $F \times y \stackrel{\alpha\beta}{\Rightarrow} [{\sf zero?}] y([g]x) ([h]x([{\sf pred}]y)(F \times ([{\sf pred}]y)))$
 - F は次の M の不動点: $M \equiv \lambda f \ x \ y. [zero?] y([g]x) ([h]x([pred]y)(f \ x([pred]y)))$
 - Curryの不動点演算子 $Y \equiv \lambda y. (\lambda x. y(x x)) (\lambda x. y(x x))$ を用いると: $F \equiv Y M$ $F \equiv Y \left(\lambda f \ x \ y. [zero?] y([g]x) ([h]x([pred]y)(f \ x([pred]y)))\right)$

最小解演算子

- ・単純化して、引数は1つとする.
 - $f(x) = \mu_y(g(x, y) = 0)$
- *F* ≡ [*f*] の構成:
 - H を次の性質を満たす λ 式とする: $H x y \stackrel{\alpha\beta}{\Rightarrow} [zero?]([g]x y)y(H x([suc]y))$
 - H は Curry の不動点演算子 Y を用いることで定義できる: $H \equiv Y \left(\lambda h \ x \ y . [zero?]([g]x \ y)y \left(h \ x ([suc]y) \right) \right)$
 - $F \equiv \lambda x. H x[0]$ $F \equiv \lambda x. Y \left(\lambda h x y. [zero?]([g]x y)y(h x([suc]y))\right)x[0]$

計算可能性

- ·計算可能な関数はλ表現可能である.
 - 計算可能な関数は帰納的関数である。
 - 帰納的関数はλ表現を持つ.

- λ表現可能な関数は計算可能である.
 - λ表現可能な関数は最左β変換により実行可能である。
 - λ式を数字でコード化できる。
 - ・ 最左β変換を行うプログラムを作成することができる.

η変換

- 関数の外延性(extensionality)
 - 2つの関数は、与えられた引数に対して同じ値を返す時に等しい.
 - $f = g \Leftrightarrow \forall x (f(x) = g(x))$
- $\alpha\beta$ 同等性では外延性は成り立たない.
 - $P \stackrel{\alpha\beta}{\Leftrightarrow} Q$ であれば, $x \notin FV(PQ)$ に対して $P \stackrel{\alpha\beta}{\Leftrightarrow} Q \times \mathring{m}$ が成り立つ.
 - しかし,逆は成り立たない: $\lambda x. y. x \stackrel{\alpha\beta}{\Leftrightarrow} y$ ではない.

η変換:

$$\lambda x. P \stackrel{\eta}{x \to P}$$

$$t = t \stackrel{\vdash}{=} t \quad x \notin FV(P)$$

まとめ

- ラムダ式
- ・ラムダ式の変換
 - α変換
 - β変換
 - η変換
- 計算可能性
 - · λ表現
 - 自然数のλ表現

