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Pythonによる数値解析



数値積分
• ガウスの数値積分の公式
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数値積分：矩形近似、台形公式
• 四角形で近似する


‣ 内側・外側・中点


• 台形公式は台形で近似する
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数値積分：シンプソンの公式
• シンプソンの公式


‣ 2次曲線で近似する


‣ f(x)をa, bの中点mで 

交差するP(x)で代替する


‣ 積分値は、以下のような式で近似できる
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数値積分の各公式
• ニュートン・コーツの積分公式


‣ 区間[a,b]内に(n+1)個の分点a=x0, x1, x2, … xn=bをとり、その点でf(x)と値が一致する補間多項式
Pn(x)を求めて近似するとき、これを数値積分の公式と呼ぶ。 

 

• 台形公式


‣ n=1のとき


• シンプソンの公式


‣ n=2のとき


• 3/8シンプソンの公式


‣ n=3のとき
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f (x)dx ! Pn (x)dx = aj f (x j )
j=0

n
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b
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b

∫

f (x)dx ! h
2a

b

∫ f (a)+ f (b)( ),h = b − a

f (x)dx ! h
3a

b

∫ f (a)+ 4 f (a + h)+ f (b)( ),h = b − a
2

f (x)dx ! 3h
8a

b

∫ f (a)+ 3 f (a + h)+ 3 f (a + 2h)+ f (b)( ),h = b − a
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数値積分：合成シンプソンの公式
• composite simpsonの公式では、各区間を分けて公式を適用し、その結果を足し合わせてを使って、積分値を求めていく


• 展開すると以下のようになる


• Pythonでの記述（lower～upperの区間をn個に分割するとする）


delta = (upper-lower) / n


h = delta / 2


x = lower


ss = 0.0 # simpsonでの面積


for i in range( n-1 ):


    ss += 4 * f( x + h ) + 2 * f( x + delta )


    x += delta


ss += 4 * f( x + h )


result = h / 3.0 * ( f(lower) + ss + f(upper) )
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数値積分：合成シンプソン3/8公式
• 合成シンプソン3/8公式は、3次曲線による補間を使い、各区間に適用して、その結果を足しあわせる


• Pythonで記述する（lower～upperの区間をn個に分割するとする）


n = n // 3 * 3  # 3の倍数にする 

h = (upper-lower) / n


x = lower


ss = 0.0 


for i in range( 0, n-3,  3 ):


    ss += 3 * f( x + h ) + 3 * f( x + 2*h ) + 2 * f( x+3*h)


    x += 3*h


ss +=  3 * f( x + h ) + 3 * f( x + 2*h )


result = 3.0 * h / 8.0 * ( f(lower) + ss + f(upper) )
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数値積分：Romberg積分
• 再帰関数を使って求める方法


• 区間[a,b]のf( x )の積分値を求める


• Wikipedia英語版「Romberg's method」より
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πの値を数値積分で求める
• f(x)=abs(1-x**2)**0.5と置いておく


‣ absを掛けるのはマイナスにしない


‣ x=0～1.0の間で求める
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精度（仮数部の桁数）の指定
•Decimalクラスのオブジェクトを利用する


getcontext().prec = 仮数部の桁数を指定


getcontext().rounding = 丸め方の指定


•from decimal import * でモジュールを使う指定をする


•Decimal( 値 )でその精度の変数を作る


•例：


from decimal import *


getcontext().prec = 100


value2 = Decimal( 2 )


value3 = Decimal( 3 )


print( value2 / value3 )


print( value2.sqrt() )
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Decimalあるある
• 実数からDecimalにするよりも、文字列からDecimal

にした方が精度が高い（実数の場合は、元のIEEE 

754上の誤差も入ってしまう）


• 例：


getcontext().prec = 28


Decimal('3.14')


# Decimal('3.14')


Decimal(3.14)


# 
Decimal('3.1400000000000001243449787580175
32527446746826171875')


• 丸め方を決められる（正確な四捨五入も可能）


• ROUND_CEILING, ROUND_DOWN, ROUND_F
LOOR, ROUND_HALF_DOWN, ROUND_HALF
_EVEN, ROUND_HALF_UP, ROUND_UP,　
ROUND_05UP がある


• 例：


Decimal('7.325').quantize(Decimal('.01'), 
rounding=ROUND_DOWN)


# Decimal('7.32')


Decimal('7.325').quantize(Decimal('1.'), 
rounding=ROUND_UP)


# Decimal('8')


Decimal('7.325').quantize(Decimal('.01'), 
rounding=ROUND_HALF_UP)


# Decimal('7.33')
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Decimalで使えるインスタンスメソッド
• 演算子


‣ + , - , * , **, / , //, % などの演算子が使える


‣ 例：


- Decimal( "2.5" ) % Decimal( "0.7" ) → Decimal('0.4')

• 数学関数


‣ abs(), exp(), ln(), log10(), sqrt()

• 丸め関数


‣ quantize()
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decimalモジュールのContextクラスのオブジェクト
• Contextクラスのオブジェクト作成用のメソッド


‣ Context(prec=桁数, rounding=小数の最下位の丸め方  )


• Decimalクラスのオブジェクト作成用のメソッド


‣ create_decimal( string_value ), create_decimal_from_float( float_value )

• 演算用の関数


‣ add( x, y ), divide(x, y), divide_int(x, y), divmod(x, y), minus(x), multiply(x, y), plus(x), power(x, y, modulo=None), remainder(x, y), 
remainder_near(x, y), subtract(x, y)


• 比較用の関数

‣ compare(x, y), compare_signal(x, y), compare_total(x, y), compare_total_mag(x, y), max(x, y), max_mag(x, y), min(x, y), 

min_mag(x, y), same_quantum(x, y)


‣ is_canonical(x), is_finite(x), is_infinite(x), is_nan(x), is_normal(x), is_qnan(x), is_signed(x), is_snan(x), is_subnormal(x), is_zero(x)

• コピー用の関数


‣ canonical(x), copy_abs(x), copy_negate(x), copy_sign(x, y)

• 数学関数


‣ abs( x ), exp(x), fma(x, y, z), ln(x), log10(x), logb(x), scaleb(x, y), sqrt(x)

• 丸め関数


‣ next_minus(x), next_plus(x), next_toward(x, y), quantize(x, y), to_integral_exact(x)
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decimalモジュールのContextを使う例
• 例：


‣ stringPI = "3.1415926535897932384626433832795"  # 32 digits in the fraction


‣ context = Context(prec=len(stringPI)-2, rounding=ROUND_HALF_UP )


‣ decimalPI = context.create_decimal( strPI )


‣ print( decimalPI )


‣ decimal2 = context.create_decimal_from_float( 2 )


‣ decimal05 = context.create_decimal_from_float( 0.5 )


‣ print( context.power( decimal2, decimal05 ) )
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mpmathライブラリ
• 桁数を指定することができる


‣ from mpmath import mp


‣ mp.dps = 30  # 10進数での仮数部の桁数（bit数指定ではmp.prec）


• 3つの型変換がある


‣ mp.mpf( 整数・実数・数字文字列 ) … 実数型のオブジェクト


‣ mp.mpc( 実部, 虚部 ) … 複素数型のオブジェクト


‣ mp.matrix( リスト ) … 行列型のオブジェクト


• 詳細は、https://mpmath.org/doc/current/を参照
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πの値を求める
• 収束度の遅い方法


‣ モンテカルロ法で求める（非常に
遅い）


‣ 数値積分で求める


‣ オイラーのζ関数を使う


• 収束度の速い方法（Wikipedia「マチ
ンの公式」参照）


‣ オイラーの公式（1748年）


‣ マチンの公式（1706年）


‣ ガウスの公式（1863年）


‣ ストーマーの公式（1896年）


‣ 高野喜久雄の公式（1982年）


• 収束度が非常に速い方法


‣ ガウス＝ルジャンドルのアルゴリ
ズム


‣ チェドノフスキーのアルゴリズム
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https://ja.wikipedia.org/wiki/%E3%83%9E%E3%83%81%E3%83%B3%E3%81%AE%E5%85%AC%E5%BC%8F
https://ja.wikipedia.org/wiki/%E3%83%9E%E3%83%81%E3%83%B3%E3%81%AE%E5%85%AC%E5%BC%8F
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https://ja.wikipedia.org/wiki/%E3%83%9E%E3%83%81%E3%83%B3%E3%81%AE%E5%85%AC%E5%BC%8F


πを求める式のいくつか
• 級数で求める（収束遅い）


‣ ライプニッツの公式


‣ ウォリスの公式


‣ オイラーのζ(2)関数


• arctanで求める


‣ オイラーの公式


‣ マチンの公式


‣ ガウスの公式


‣ ストーマーの公式


‣ 高野喜久雄の公式
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πを求めるときのarctan
• テイラー展開で求める


• xの絶対値が1未満のときにしか機能しないので注意


• 複素数を使うと次のようにも求められる（mpmathでの求め方）
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ガウス＝ルジャンドル（Gauss-Legendre）のアルゴリズム
• 円周率を計算する際に用いられる反復計算アルゴリズム


• 円周率を計算するものの中では非常に収束が速い


• 収束は、小数第n桁まで求めるのに、log2 n回の繰返しで求めることが可能


• アルゴリズムは、以下の通り


‣ 初期値の設定


‣ 漸化式


‣ πの算出
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a0 = 1 b0 =
1
2

t0 =
1
4

p0 = 1

π ≈
a + b( )2
4t

an+1 =
an + bn
2

bn+1 = anbn

tn+1 = tn − pn an − an+1( )2
pn+1 = 2pn



チュドノフスキー（Chudnovsky）のアルゴリズム
• Flex Kleinのj関数（j不変関数: j-invariant）に基づいている。


• 負のヘーグナー数 d = -163にj関数を適用してできる数を利用する。


• この数に急速に収束する一般化超幾何系列から、次の式が求められる。


• 高速反復実装の場合、次のように簡略化することができる。


• このアルゴリズムを用いて、2022年3月までに100兆桁のπの値が求められているが、桁数が少なけれ
ば、ガウス＝ルジャンドルのアルゴリズムの方が収束度は速い
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https://en.wikipedia.org/wiki/Chudnovsky_algorithm
https://en.wikipedia.org/wiki/J-invariant
https://en.wikipedia.org/wiki/Heegner_number
https://en.wikipedia.org/wiki/Generalized_hypergeometric_function


numbaの高速関数
• Anacondaでは、標準的に用いることができる


• from numba import jit を記述する


• @jit修飾子を関数の定義の前に入れる


‣ その関数は、実行前にコンパイルされるので、高速に動く



timeモジュールのnano second関数
• import timeが必要


• 以下の関数が、Python 3.8から追加された


‣ time.clock_gettime_ns()


‣ time.clock_settime_ns()


‣ time.monotonic_ns()


‣ time.perf_counter_ns()


‣ time.process_time_ns()


‣ time.time_ns()
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実行速度（性能）測定
• timeitモジュールのtimeit関数での測定、repeat関数は何回か試行ししてみて、そのすべての結果をリストで
表示する


‣ import timeit


‣ timeit.timeit( '関数呼出しの文字列', globals=globals(), number=実行回数)


‣ timeit.repeat( lambda: 関数呼出し, repeat=試行回数, number=実行回数))


‣ 文字列としても関数呼出しができるし、引数なしのlambda関数（無名関数）として関数呼出しが記述が
できる


• IPythonの%timeit


‣ %timeit 関数名


‣ %%timeit 
Pythonスクリプト 

Escapeキーで、スクリプトの入力終了
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