
第10回講義資料

箕原辰夫

スクリプト言語プログラミング

Pythonによる数値解析

数値積分
• ガウスの数値積分の公式

2

w1 w2 w3 w4 w5

数値積分：矩形近似、台形公式
• 四角形で近似する

‣ 内側・外側・中点

• 台形公式は台形で近似する

3

数値積分：シンプソンの公式
• シンプソンの公式

‣ 2次曲線で近似する

‣ f(x)をa, bの中点mで 

交差するP(x)で代替する

‣ 積分値は、以下のような式で近似できる

4

数値積分の各公式
• ニュートン・コーツの積分公式

‣ 区間[a,b]内に(n+1)個の分点a=x0, x1, x2, … xn=bをとり、その点でf(x)と値が一致する補間多項式
Pn(x)を求めて近似するとき、これを数値積分の公式と呼ぶ。 

 

• 台形公式

‣ n=1のとき

• シンプソンの公式

‣ n=2のとき

• 3/8シンプソンの公式

‣ n=3のとき

5

f (x)dx ! Pn (x)dx = aj f (x j)
j=0

n

∑a

b

∫a

b

∫

f (x)dx ! h
2a

b

∫ f (a)+ f (b)(),h = b − a

f (x)dx ! h
3a

b

∫ f (a)+ 4 f (a + h)+ f (b)(),h = b − a
2

f (x)dx ! 3h
8a

b

∫ f (a)+ 3 f (a + h)+ 3 f (a + 2h)+ f (b)(),h = b − a
3

数値積分：合成シンプソンの公式
• composite simpsonの公式では、各区間を分けて公式を適用し、その結果を足し合わせてを使って、積分値を求めていく

• 展開すると以下のようになる

• Pythonでの記述（lower～upperの区間をn個に分割するとする）

delta = (upper-lower) / n

h = delta / 2

x = lower

ss = 0.0 # simpsonでの面積

for i in range(n-1):

 ss += 4 * f(x + h) + 2 * f(x + delta)

 x += delta

ss += 4 * f(x + h)

result = h / 3.0 * (f(lower) + ss + f(upper))

6

数値積分：合成シンプソン3/8公式
• 合成シンプソン3/8公式は、3次曲線による補間を使い、各区間に適用して、その結果を足しあわせる

• Pythonで記述する（lower～upperの区間をn個に分割するとする）

n = n // 3 * 3 # 3の倍数にする 

h = (upper-lower) / n

x = lower

ss = 0.0

for i in range(0, n-3, 3):

 ss += 3 * f(x + h) + 3 * f(x + 2*h) + 2 * f(x+3*h)

 x += 3*h

ss += 3 * f(x + h) + 3 * f(x + 2*h)

result = 3.0 * h / 8.0 * (f(lower) + ss + f(upper))

7

数値積分：Romberg積分
• 再帰関数を使って求める方法

• 区間[a,b]のf(x)の積分値を求める

• Wikipedia英語版「Romberg's method」より

8
https://en.wikipedia.org/wiki/Romberg%27s_method

https://en.wikipedia.org/wiki/Romberg%27s_method
http://www.apple.com/jp

πの値を数値積分で求める
• f(x)=abs(1-x**2)**0.5と置いておく

‣ absを掛けるのはマイナスにしない

‣ x=0～1.0の間で求める

9

y = 12 − x2

精度（仮数部の桁数）の指定
•Decimalクラスのオブジェクトを利用する

getcontext().prec = 仮数部の桁数を指定

getcontext().rounding = 丸め方の指定

•from decimal import * でモジュールを使う指定をする

•Decimal(値)でその精度の変数を作る

•例：

from decimal import *

getcontext().prec = 100

value2 = Decimal(2)

value3 = Decimal(3)

print(value2 / value3)

print(value2.sqrt())

10

Decimalあるある
• 実数からDecimalにするよりも、文字列からDecimal

にした方が精度が高い（実数の場合は、元のIEEE

754上の誤差も入ってしまう）

• 例：

getcontext().prec = 28

Decimal('3.14')

Decimal('3.14')

Decimal(3.14)

Decimal('3.1400000000000001243449787580175
32527446746826171875')

• 丸め方を決められる（正確な四捨五入も可能）

• ROUND_CEILING, ROUND_DOWN, ROUND_F
LOOR, ROUND_HALF_DOWN, ROUND_HALF
_EVEN, ROUND_HALF_UP, ROUND_UP,　
ROUND_05UP がある

• 例：

Decimal('7.325').quantize(Decimal('.01'),
rounding=ROUND_DOWN)

Decimal('7.32')

Decimal('7.325').quantize(Decimal('1.'),
rounding=ROUND_UP)

Decimal('8')

Decimal('7.325').quantize(Decimal('.01'),
rounding=ROUND_HALF_UP)

Decimal('7.33')

11

Decimalで使えるインスタンスメソッド
• 演算子

‣ + , - , * , **, / , //, % などの演算子が使える

‣ 例：

- Decimal("2.5") % Decimal("0.7") → Decimal('0.4')

• 数学関数

‣ abs(), exp(), ln(), log10(), sqrt()

• 丸め関数

‣ quantize()

12

decimalモジュールのContextクラスのオブジェクト
• Contextクラスのオブジェクト作成用のメソッド

‣ Context(prec=桁数, rounding=小数の最下位の丸め方)

• Decimalクラスのオブジェクト作成用のメソッド

‣ create_decimal(string_value), create_decimal_from_float(float_value)

• 演算用の関数

‣ add(x, y), divide(x, y), divide_int(x, y), divmod(x, y), minus(x), multiply(x, y), plus(x), power(x, y, modulo=None), remainder(x, y),
remainder_near(x, y), subtract(x, y)

• 比較用の関数

‣ compare(x, y), compare_signal(x, y), compare_total(x, y), compare_total_mag(x, y), max(x, y), max_mag(x, y), min(x, y),

min_mag(x, y), same_quantum(x, y)

‣ is_canonical(x), is_finite(x), is_infinite(x), is_nan(x), is_normal(x), is_qnan(x), is_signed(x), is_snan(x), is_subnormal(x), is_zero(x)

• コピー用の関数

‣ canonical(x), copy_abs(x), copy_negate(x), copy_sign(x, y)

• 数学関数

‣ abs(x), exp(x), fma(x, y, z), ln(x), log10(x), logb(x), scaleb(x, y), sqrt(x)

• 丸め関数

‣ next_minus(x), next_plus(x), next_toward(x, y), quantize(x, y), to_integral_exact(x)

13

decimalモジュールのContextを使う例
• 例：

‣ stringPI = "3.1415926535897932384626433832795" # 32 digits in the fraction

‣ context = Context(prec=len(stringPI)-2, rounding=ROUND_HALF_UP)

‣ decimalPI = context.create_decimal(strPI)

‣ print(decimalPI)

‣ decimal2 = context.create_decimal_from_float(2)

‣ decimal05 = context.create_decimal_from_float(0.5)

‣ print(context.power(decimal2, decimal05))

14

mpmathライブラリ
• 桁数を指定することができる

‣ from mpmath import mp

‣ mp.dps = 30 # 10進数での仮数部の桁数（bit数指定ではmp.prec）

• 3つの型変換がある

‣ mp.mpf(整数・実数・数字文字列) … 実数型のオブジェクト

‣ mp.mpc(実部, 虚部) … 複素数型のオブジェクト

‣ mp.matrix(リスト) … 行列型のオブジェクト

• 詳細は、https://mpmath.org/doc/current/を参照

15

https://mpmath.org/doc/current/

πの値を求める
• 収束度の遅い方法

‣ モンテカルロ法で求める（非常に
遅い）

‣ 数値積分で求める

‣ オイラーのζ関数を使う

• 収束度の速い方法（Wikipedia「マチ
ンの公式」参照）

‣ オイラーの公式（1748年）

‣ マチンの公式（1706年）

‣ ガウスの公式（1863年）

‣ ストーマーの公式（1896年）

‣ 高野喜久雄の公式（1982年）

• 収束度が非常に速い方法

‣ ガウス＝ルジャンドルのアルゴリ
ズム

‣ チェドノフスキーのアルゴリズム

16

https://ja.wikipedia.org/wiki/%E3%83%9E%E3%83%81%E3%83%B3%E3%81%AE%E5%85%AC%E5%BC%8F
https://ja.wikipedia.org/wiki/%E3%83%9E%E3%83%81%E3%83%B3%E3%81%AE%E5%85%AC%E5%BC%8F
https://ja.wikipedia.org/wiki/%E3%83%9E%E3%83%81%E3%83%B3%E3%81%AE%E5%85%AC%E5%BC%8F
https://ja.wikipedia.org/wiki/%E3%83%9E%E3%83%81%E3%83%B3%E3%81%AE%E5%85%AC%E5%BC%8F

πを求める式のいくつか
• 級数で求める（収束遅い）

‣ ライプニッツの公式

‣ ウォリスの公式

‣ オイラーのζ(2)関数

• arctanで求める

‣ オイラーの公式

‣ マチンの公式

‣ ガウスの公式

‣ ストーマーの公式

‣ 高野喜久雄の公式
17

πを求めるときのarctan
• テイラー展開で求める

• xの絶対値が1未満のときにしか機能しないので注意

• 複素数を使うと次のようにも求められる（mpmathでの求め方）

18

ガウス＝ルジャンドル（Gauss-Legendre）のアルゴリズム
• 円周率を計算する際に用いられる反復計算アルゴリズム

• 円周率を計算するものの中では非常に収束が速い

• 収束は、小数第n桁まで求めるのに、log2 n回の繰返しで求めることが可能

• アルゴリズムは、以下の通り

‣ 初期値の設定

‣ 漸化式

‣ πの算出

19

a0 = 1 b0 =
1
2

t0 =
1
4

p0 = 1

π ≈
a + b()2
4t

an+1 =
an + bn
2

bn+1 = anbn

tn+1 = tn − pn an − an+1()2
pn+1 = 2pn

チュドノフスキー（Chudnovsky）のアルゴリズム
• Flex Kleinのj関数（j不変関数: j-invariant）に基づいている。

• 負のヘーグナー数 d = -163にj関数を適用してできる数を利用する。

• この数に急速に収束する一般化超幾何系列から、次の式が求められる。

• 高速反復実装の場合、次のように簡略化することができる。

• このアルゴリズムを用いて、2022年3月までに100兆桁のπの値が求められているが、桁数が少なけれ
ば、ガウス＝ルジャンドルのアルゴリズムの方が収束度は速い

20

https://en.wikipedia.org/wiki/Chudnovsky_algorithm
https://en.wikipedia.org/wiki/J-invariant
https://en.wikipedia.org/wiki/Heegner_number
https://en.wikipedia.org/wiki/Generalized_hypergeometric_function

numbaの高速関数
• Anacondaでは、標準的に用いることができる

• from numba import jit を記述する

• @jit修飾子を関数の定義の前に入れる

‣ その関数は、実行前にコンパイルされるので、高速に動く

timeモジュールのnano second関数
• import timeが必要

• 以下の関数が、Python 3.8から追加された

‣ time.clock_gettime_ns()

‣ time.clock_settime_ns()

‣ time.monotonic_ns()

‣ time.perf_counter_ns()

‣ time.process_time_ns()

‣ time.time_ns()

22

実行速度（性能）測定
• timeitモジュールのtimeit関数での測定、repeat関数は何回か試行ししてみて、そのすべての結果をリストで
表示する

‣ import timeit

‣ timeit.timeit('関数呼出しの文字列', globals=globals(), number=実行回数)

‣ timeit.repeat(lambda: 関数呼出し, repeat=試行回数, number=実行回数))

‣ 文字列としても関数呼出しができるし、引数なしのlambda関数（無名関数）として関数呼出しが記述が
できる

• IPythonの%timeit

‣ %timeit 関数名

‣ %%timeit 
Pythonスクリプト 

Escapeキーで、スクリプトの入力終了

23

