
第12回講義資料

箕原辰夫

スクリプト言語プログラミング
Pythonによる数値解析

Numpyを使った多次元配列（ndarray）
• import numpy as np

• np.array(リスト) → numpy上の配列のオブジェクトに変換される

• np.array(２次元リスト) → numpy上の２次元配列のオブジェクトに変換される

2

Numpyの配列の要素の型指定
• np.array(リスト, dtype=numpyの型)

• 標準では、実数はfloat64になっている。ただし表示は10桁程度。整数はint64で対応、複素数
はcomplex128、文字列はunicodeになっている

• numpyの型一覧

‣ 整数（ビット数およぼ符号無し指定）：int8, int16, int32, int64, uint8,uint16, uint32, uint64

‣ 実数（ビット数指定）：float16, float32, float64, float128

‣ 複素数（ビット数指定）：complex64, complex128, complex256

‣ その他：bool, unicode, object

• 配列.astype(numpyの型)で、各要素の型を変換したものが返される

‣ 例：a.astype(np.float128)

• 参照：https://note.nkmk.me/python-numpy-dtype-astype/

3

Numpyの多次元配列のインデックス参照
• インデックス参照
‣ 配列名[インデックスの整数式] 例：a[5], a[-6]

• 多次元配列のインデックス参照
‣ 配列名[1次元目, 2次元目, ...] 例：a[3, 4], a[-2, -1, 3]

• ファンシーインデックス参照（リストのインデックスの要素だけがフィルタリングされたも
のが返される）
‣ 配列名[インデックスのリスト] 例：a[[3, 7, 2]]

• ブールインデックス参照（論理リストのTrueに対応する要素だけがフィルタリングされて返さ
れる）
‣ 配列名[論理値リスト] 例：a[[True, False, True, True]]

• 参照：https://docs.pyq.jp/python/pydata/numpy/math/index_ref.html

4

Numpyの配列のスライスと論理式によるフィルタリング

• スライス
‣ 配列変数[開始位置 : 終了位置+1]

‣ 配列変数[開始位置 : 終了位置+1 : 差分]

• 論理式によるフィルタリング
‣ 配列変数[配列変数名を含む論理式]

‣ 例： xa = np.array([-3, -4, -1, 2, 3, 4, 6])

 even = xa[xa % 2 == 0]
 plus = xa[xa >= 0]

5

多次元配列のスライス
• 2次元配列の場合には、スライスとイン
デックスを組み合わせて、列ごとに切り
出した1次元配列を取り出すことができ
る。
‣ 例：
import numpy as np
a = np.array([[1, 2], [3, 5], [4, 6], [7,
9]])
a[:, 1]
→ array([2, 5, 6, 9])
a[1:, 0]
→ array([3, 4, 7])

• また、2次元目もスライスで指定した場
合、部分的な2次元配列を取り出すこと
がが可能になっている

b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]
])
b[1:,1:]
→ array([[5, 6],
 [8, 9]])
b[:, 2:]
→ array([[3],
 [6],
 [9]])

6

Numpyの配列生成関数
• np.arange(初期値, 上限, 差分)

• np.linspace(初期値, 上限, 分割数, endpoint=True)

• np.ones(個数)→要素が１から構成される配列を生成、np.ones((n, m))→n行m列の2次元配列で作成

• np.zeros(個数)→要素が０から構成される配列を生成、np.zeros((n, m))→n行m列の2次元配列で作成

• np.full(個数, 値)→要素が値から構成される配列を生成、np.full((n, m), value)→n行m列の2次元配列で作成

• np.eye(次数)→対角成分に１を持つ２次元配列を生成（正方行列の単位行列の２次元配列）

• np.diag(リスト)→リストの要素を対角成分にもつ２次元配列を生成（正方行列の２次元配列）

• np.random.rand(個数)→個数分一様乱数（0～1）を発生した配列を返す

• np.random.randn(個数)→正規乱数（平均：0, 分散: 1）を発生した配列を返す

• np.random.randint(下限, 上限, 個数)→一様乱数（下限～上限-1）を個数分発生

• rng = np.random.default_rng() # 標準の乱数発生器

‣ rng.random(None)→1個だけ一様乱数を発生

‣ rng.random(個数)→個数分の一様乱数を発生し、配列を返す

‣ rng.random((個数, 個数))→個数分の一様乱数を発生し、2次元配列を返す

7

Numpyのarrayの属性
• ndim … 次元数（np.ndim(array)でも同じ）

• shape … 各次元の要素の個数をタプルで返す（np.shape(array)でも同じ）

• base…そのarrayのベース（共通）となっている配列を返す

• size…要素全体の個数（np.size(array)でも同じ）

• T…転置行列を配列として返す（２次元以上の場合、np.transpose(array)でも同じ））

• flat…各要素を巡回できるようなイテレータを返す（np.array(array.flat)にしないと、1

次元配列にはならない、array.flatten()で1次元配列に変換可能）

• real/imag…実数・虚数部分を返す（要素が複素数の場合）

• len(配列) … 1次元目の大きさ

• len(配列[0])…2次元目の大きさ

8

Numpyのarrayのメソッド
• item(インデックス)…指定されたインデックスの要素の値を返す

• tolist()…Pythonのリストに変換したものを戻す

• tofile(ファイル名, sep=区切り文字列 , format=printfのフォーマット文字列)…テ
キストファイルに配列の内容を出力する

• copy()…その配列のコピーを返す

• view()…その配列を共有するビューを作成する

• fill(値)…指定された値ですべての要素を埋め尽くす

9

Numpyの配列変更の関数
• 要素の追加・挿入・削除

‣ delete: インデックスの位置の要素を削除した配列を生成する
（axis=Noneだと2次元以上の配列でも結果は1次元配列にな
る）

- a = np.delete(a, index, axis=None)
- https://note.nkmk.me/python-numpy-delete/

‣ insert: 配列のインデックスの位置に要素やリストを挿入した
配列を生成する（axis=Noneだと2次元以上の配列でも結果は
1次元配列になる）

- a = np.insert(a, index, value or list, axis=None)
- https://note.nkmk.me/python-numpy-insert/

‣ append: 配列の最後に要素を追加した配列を生成する
（axis=Noneだと2次元以上の配列でも結果は1次元配列にな
る）

- a = np.append(a, value, axis=None)

- 2次元配列だと、aとvalueが同じ行数列数でないとエラー
になる

- https://note.nkmk.me/python-numpy-append/

• 繰返しで要素を作っていく
‣ tile: 配列の並びが指定回繰り返された配列ができる

- a = np.tile(a, times) # timesは整数あるいはタプル

- timesがタプルになっていると、各要素分、その次元に繰
り返される

‣ repeat: 各要素が指定回繰り返した配列ができる（axis=None

だと2次元以上の配列でも結果は1次元配列になる）

- a = np.repeat(a, repeats, axis=None) # timesは整数ある
いは整数を要素として持つ1次元リスト

‣ 参考：
- https://numpy.org/doc/stable/reference/generated/

numpy.repeat.html#numpy-repeat
- https://note.nkmk.me/python-numpy-tile/

10

https://note.nkmk.me/python-numpy-delete/
https://note.nkmk.me/python-numpy-insert/
https://note.nkmk.me/python-numpy-append/
https://numpy.org/doc/stable/reference/generated/numpy.repeat.html#numpy-repeat
https://numpy.org/doc/stable/reference/generated/numpy.repeat.html#numpy-repeat
https://note.nkmk.me/python-numpy-tile/

配列の要素・次元の変更
• resize/reshape/flip/flatten/ravel
‣ reshape: 配列の次元を変更する

- a = np.reshape(a, (各次元のサイズ))

- 同じ要素の個数でなければならない、1次元
に変更する場合は、タプルでなくて良い

- reshapeは、ビューとしての配列を返すの
で、ビューから元の配列の要素が変更され
る

‣ resize: 配列の次元を変更する

- a = np.resize(a, (各次元のサイズ))
- 要素の個数は増やしたり、減らしたりでき
る（増やした場合は、元の要素の値が繰り

返される）、1次元の場合は、タプルでなく
て良い

- resizeは変更された配列のコピーを返す

‣ flatten: 配列を 1次元にする

- a = a.flatten()
- flattenは1次元された配列のコピーを返す

‣ ravel: 1次元にする

- a = np.ravel(a)
- ravelは1次元にされた配列のビューを返す

‣ 参考：
- https://note.nkmk.me/python-numpy-

reshape-usage/
- https://note.nkmk.me/python-numpy-ravel-

flatten/

11

https://note.nkmk.me/python-numpy-reshape-usage/
https://note.nkmk.me/python-numpy-reshape-usage/
https://note.nkmk.me/python-numpy-ravel-flatten/
https://note.nkmk.me/python-numpy-ravel-flatten/

配列の分割
• 配列の分割
‣ split: 配列を分割する

- ビューとして分割された配列のリスト
ができる

- 書式：np.split(a, 個数またはリスト)
- 個数だと、個数ごとに分割される
- リストだと、各リストの要素が次に
分割されるリストのインデックスの
先頭と見なされる

- 例：np.split(a, 2)

- 例：np.split(a, [1,2,3]) # 4xNの行列

‣ hsplit: 2次元以上の配列を横に分割する

- 例 ：np.hsplit(a, 2) # 横に2分割（2次

元だと結果は、列方向に2つ分かれた

2次元配列のリスト）

‣ vsplit: 2次元以上の配列を縦に分割

- 例：np.vsplit(a, 4) # 縦に4分割（2次

元だと結果は、行方向に4分割された

2次元配列のリスト）

‣ https://note.nkmk.me/python-numpy-
split/

12

https://note.nkmk.me/python-numpy-split/
https://note.nkmk.me/python-numpy-split/

配列の結合
• 配列の結合（配列の結合はすべてコピーが生
成される）

‣ concatenate: 配列を結合する

- 例：np.concatenate([a, b]) # 標準は行
方向

- np.concatenate([a, b], axis=0) # 行方向

- np.concatenate([a, b], axis=1) # 列方向

‣ stack: 配列を新たな軸を指定して結合する

- 例：np.stack([a, b]) # a, bは1次元だ
と、2次元配列になる、a, bが2次元配列
だと3次元配列になる

‣ vstack: 2次元以上の配列を縦に結合する

- 例：np.vstack([a, b])

‣ hstack: 2次元以上の配列を横に結合する

- 例：np.hstack([a, b])

‣ block: 配置をリストで記述して結合

- 例：np.block([a, b]) # 横結合

 np.block([[a],[b]]) # 縦結合

 np.block([[[a]],[[b]]]) # 3次元結合

‣ https://note.nkmk.me/python-numpy-
concatenate-stack-block/

13

https://note.nkmk.me/python-numpy-concatenate-stack-block/
https://note.nkmk.me/python-numpy-concatenate-stack-block/

Numpyのr_およびc_オブジェクト
• r_は、Row方向
• 配列の結合
‣ import numpy as np

a, b = np.array([1, 2, 3]), np.array([4, 5, 6])
np.r_[a, b]
⇒ np.array([1, 2, 3, 4, 5, 6])

• スライスによる配列の作成
‣ np.r_[1: 10]
⇒ np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])

np.r_[: 5]
⇒ np.array([0, 1, 2, 3, 4])

np.r_[2: 10: 2]
⇒ np.array([2, 4, 6, 8])

np.r_[1:5 , 0, 4, np.array([3,2])]
⇒ np.array([1, 2, 3, 4, 0, 4, 3, 2])

• c_は、Column方向

‣ a = np.arange(1, 4)
b = np.arange(4, 7)
np.c_[a, b]
⇒

[[1 4]
 [2 5]
 [3 6]]

‣ np.c_[1:5,5:9]
⇒

[[1 5]
 [2 6]
 [3 7]
 [4 8]]

14

r_, c_の結合の仕方を文字列で指定する
• 数値の文字列(string)による軸や次元の指定

‣ "a,b,c"で指定、標準は"0,0,-1"

‣ aは、どの軸（axis）の方向に沿って配列
を結合するのか

‣ bは、できあがる配列の次元数の最小値

‣ cは、次元数の少ない配列の次元数の拡張
を行った際、形状（shape）の表記とし
て、どこに配列の最後の次元が置かれるべ
きか

• 例：

a = np.ones((2, 2))
b = np.zeros((2, 2))

np.r_["1", a, b]
⇒

[[1., 1., 0., 0.],
 [1., 1., 0., 0.]]

np.r_["0", a, b]
⇒

[[1., 1.],
 [1., 1.],
 [0., 0.],
 [0., 0.]]

• 参考資料：https://deepage.net/features/

numpy-cr.html

15

https://deepage.net/features/numpy-cr.html
https://deepage.net/features/numpy-cr.html
https://deepage.net/features/numpy-cr.html

Numpyの演算
• array同士の演算

‣ ベクトルとしての演算ライブラリになる
‣ スカラー値との演算の場合は、各要素に適用され、新しい配列が生成される
‣ 内部的にはndarrayで実装されている

‣ 行列として乗算するときは、@演算子を用いる

• matrixの演算（現在はndarrayを使うように推奨されている）

‣ array(ndarray)クラスのサブクラスになっているので、arrayクラスで使えるものは、す
べて使える

‣ 行列としての演算ライブラリになる

• arrayとmatrixは、演算の方式が異なる部分もあるので、どちらを使うかは、目的に応じて

16

Numpyのarray同士の演算
• 配列 ± 配列…要素同士の加減算

• 配列 * 数値 あるいは 数値 * 配列…各要素のスカラー倍

• 配列 * 配列…要素同士の乗算（アダマール積：Hadamard product）

• 配列 @ 配列…行列の乗算（1次元の場合は、要素同士の乗算の総和になる）
Python 3.5より

• 配列 / 配列…要素同士の除算

• 配列 ** 数値…各要素のべき乗

• 配列 ** 配列…各要素の後ろの要素のべき乗

17

Numpyのブロードキャスティング
• 加算や減算を2つの配列に対して行なうとき

• ルール1：次元数を揃える

‣ 2つの配列の次元数が異なる場合、次元数が少ない方の配列の先頭にサイズ（長さ）が1

の新しい次元を追加して次元数を揃える。

• ルール2：各次元のサイズ（長さ）を揃える

‣ 2つの配列の各次元のサイズが一致しない場合、サイズが1である次元は他方の配列の次
元のサイズに引き伸ばされる（値が繰り返される）。

‣ 2つの配列のどちらのサイズも1ではない次元が存在するとき、ルール1が適用できない
ため、ブロードキャストできずにエラーとなる。

• なお、配列ndarrayの次元数はndim属性、形状はshape属性で取得できる。

• 参照：https://note.nkmk.me/python-numpy-broadcasting/

18

https://note.nkmk.me/python-numpy-broadcasting/

Numpyのarrayのベクトル演算
• np.linalg.norm(配列)…ノルム（大きさ）を求める

• np.inner(配列, 配列)あるいはnp.dot(配列, 配列)…内積を求める

• np.outer(配列, 配列)…外積を求める（各要素同士の積の総当たりとなる２次元
配列が生成）

• np.cross(配列, 配列)…クロス積を求める

19

ベクトルの直積
• 直積あるいはデカルト積（Cartesian product）は、ベクトルの各成分の組合わせ
を求めるものである。

• numpyには、用意されておらず、scikit-learnのextmathモジュールにcartesianが用
意されている。
‣ from sklearn.utils.extmath import cartesian
‣ cartesian((リスト, リスト,)) → 直積の2次元リストが返される

‣ リストは、2つ以上必要になる。タプルとして渡すので、外側に丸括弧が必要。

• 参考：

https://funmatu.wordpress.com/2018/09/02/numpyで直積（デカルト積，
cartesian-product），順列（permutations），組

20

https://funmatu.wordpress.com/2018/09/02/numpy%E3%81%A7%E7%9B%B4%E7%A9%8D

numpyの行列・ベクトル用関数
• np.dot(a, b[, out]) 2つの配列のドット積（行列の場合は通常の行列の積：dot product)

• np.vdot(a, b) 2つのベクトルのドット積

• linalg.multi_dot(arrays, *[, out]) 2つ以上の配列のドット積を求める、なおどのドット積～求
めるかは、自動的に最速の評価順序で決定される

• np.inner(a, b) 2つの配列の内積 (inner product)

• np.outer(a, b[, out]) 2つのベクトルの外積 (outer product)

• np.matmul(x1, x2, /[, out, casting, order, …]) 2つの配列の行列積（Matrix product)

• np.tensordot(a, b[, axes]) 指定された軸（axes）に添ってのテンソル・ドット積（tensor dot

product)
• np.linalg.matrix_power(a, n) 正方行列のn乗（整数）

• np.kron(a, b) 2つの配列のクロネッカー積 (Kronecker product)

21

Numpyの数学関数演算
• ndarrayを引数に持つと、すべての要
素に対して関数が適用され、結果の
ndarrrayが生成される。計算は整数,

実数, 複素数は、それぞれ、int64,

float64, complex128が基本
• 三角関数
‣ sin(), cos(), tan()
‣ arcsin(), arccos, arctan()
‣ radians(), degrees(), deg2rad(),

rad2deg()

• 指数・対数関数
‣ power(), exp(), sqrt()
‣ log(), log2(), log10(), log1p()

• 整数・絶対値変換
‣ ceil(), floor(), trunc(), round(),

around(), rint(), fix()
‣ fabs(), absolute(), abs()

• 定数
‣ pi, e

• 参考：https://deepage.net/features/

numpy-math.html

22

Numpyの行列
• 現在、使用は推奨されていない
• import numpy as np

• np.matrix(２次元リスト) → numpy上の行列のオブジェクトに変換される

• np.mat(２次元リスト) → numpy上の行列のオブジェクトに変換される

• np.mat("文字列") → 文字列は、「要素 … ; 要素 …」の形になっていること
（例：np.mat("1 2; 3 4")　）

• np.bmat(データ)→小行列を足し合わせて行列を作る

23

行列では演算子が使える
• 行列 + 行列…行列の和

• 行列 - 行列…行列の差

• 行列 * 行列　あるいは　行列 @ 行列…行列の積

• 行列 / 行列 … 単に要素同士を除算した商を成分に持つ行列が生成

• スカラー値 * 行列…成分がスカラー倍される

• 行列.T…転置行列

• 行列.I…逆行列

24

matrixとarrayの乗算
• arrayとmatrixの積は、matrixとして求められる。ただし、matrixと対応する次元
のサイズとarrayのサイズが一致していること

‣ 例：a=np.array([1,2])　…　配列

 m= np.matrix([[2,4,],[5,6]])　…行列

 a * m ⇒ matrix([[12, 16]])　…行列として

• matrixとmatrixの積で計算する場合は、１次元配列は、転置をしないと計算され
ない
‣ 例：amat = np.matrix(a).T

 m * amat ⇒ matrix([[10], [17]])

25

scipyの使用方法
• scipyは、numpyをベースにしているが、上書きしている部分もある

• 計算精度などは、scipyの方が優れており、優秀なアルゴリズムを利用しているこ
とが多い

• ライブラリの導入は、import scipy as spで、利用する

• arrayやmatrixは、numpyの方を踏襲しているが、arrayについては、numpy.array

を使えと言われるし、matrixもnumpyのものなので、これもnumpy.arrayを使う
方が無難である

• サブパッケージに関しては、以下のように、パッケージごとに名前でimportす
る。
‣ 例：from scipy import linalg # 線形代数パッケージ

26

scipyのサブパッケージ
• cluster　クラスタリング・アルゴリズム

• constants　物理数学定数

• fftpack　高速フーリエ変換

• integrate　積分および常微分方程式の解法

• interpolate　内挿（補間）とスプラインに
よるスムーズ化

• io　入出力

• linalg　線形代数…一般に線形代数パッケ
ージをLAPACK（Linear Algebra

Package）と呼ぶ

• ndimage　N次元画像処理

• odr　直交距離回帰（Orthogonal distance

regression）

• optimize　最適化および解探索ルーチン

• signal　信号処理

• sparse　疎行列および関連ルーチン

• spatial　空間データ構造とアルゴリズム

• special　特殊関数

• stats　統計分布および統計関数

• 参照：https://docs.scipy.org/doc/scipy/

reference/tutorial/general.html

27

numpyおよびscipyで行列式を求める
• np.linalg.det(行列または２次元配列)…行列式を求めた結果を返す

• 行列式は、numpyのlinalgよりも、scipyのlinalgパッケージの方が精度が良い場
合がある

• from scipy import linalg…scipyで使うとき

• linalg.det(行列または２次元配列)…行列式を返す

28

scipyとnumpyで逆行列
• numpyの場合

‣ m = np.matrix([[1,2,3],[5,6,7],[4,9,8]])
‣ m.I
‣ m.I * m # 誤差で単位行列にならない

• scipyの場合（内部でnumpyのmatrixが使われる）

‣ m = sp.matrix([[1,2,3],[5,6,7],[4,9,8]])
‣ from scipy import linalg
‣ im = linalg.inv(m)
‣ im * m # やはり誤差で単位行列にならない

29

scipyによる定積分
• integrateパッケージに入っている

• romberg関数…ロンバーグ積分で求
めている
‣ romberg(関数, 下限, 上限, show=

論理値)

showがTrueになっていると、途中
の計算値も表示される

• quad関数…FORTRANの
QUADPACKライブラリから来てい
る

‣ 積分値, 絶対誤差 = quad(関数, 下
限, 上限)

• 例：

 from scipy import integrate
 def f(x): return x ** 3 + x ** 2 + x +
3
 result = integrate.romberg(f , -4, 3,
show=True)
 print(result)

30

scipyによる方程式の求値
• scipy.optimizeパッケージに、割線法・ニュー
トン＝ラフソン法、ハレー法で求めるnewton
関数などがある、

• func(x) = 0のときのxの値を求める、x0はxの
初期値
‣ from scipy import optimize
‣ optimize.newton(func, x0) … 割線法

‣ optimize.newton(func, x0, fprime=f') … ニ
ュートン法

‣ optimize.newton(func, x0, fprime=f',
fprime2=f'') …ハレー法

‣ オプションパラメータ「tol=許容誤差」も指
定できる

‣ 例：
from scipy import optimize
def func(x) : return x**2 - 2
def ffunc(x): return 2
print(optimize.newton(func, 1))
print(optimize.newton(func, 1,
fprime=ffunc))
print(optimize.newton(func, 1,
fprime=ffunc, tol=1.0e-15))

• その他に、scipy.optimizeパッケージに、
FORTRANのLAPACKから由来のfsolve関数も
ある
‣ optimize.fsolve(func, x0)

31

matplotlibのライブラリ
• import matplotlib.pyplot as plt
• 定義域 = np.linspace(開始値, 終了値, 個数, endpoint=終了値を含めるか)あるい
は、np.arange()を使っても良い

• グラフ = plt.plot(定義域の値リスト, 値域の値リスト)…グラフを表示する。
plt.plotは、オプションパラメータとして、color="色名"や、label="系列名"などを
用いることができる

• plt.setp(グラフ, color="色名")…後から属性を変えたいとき

• plt.show()…グラフ表示ウィンドウを出す

32

matplotlibグラフのタイトルなど
• plt.xlabel("x軸のラベル")

• plt.ylabel("y軸のラベル")

• plt.title("グラフのタイトル")

• plt.plot(定義域, 値域, label="系列の
タイトル", color="色名")

• plt.plot(定義域, 値域, マーカーの文
字)

‣ # {'marker': 'マーカーの文字'}で指
定することも可能

'x', 'o', '^', '--', 'bs' : 四角, '*' などの文
字を指定できる

• plt.legend() # 系列のタイトル表示

• plt.axis([xmin, xmax, ymin, ymax])
軸の最小値・最大値

• 参照：https://matplotlib.org/

tutorials/introductory/pyplot.html

33

matplotlibでサブグラフを記述したいとき
• 以下のどちらかの関数で描画領域を確保する。figsize, facecolorはオプションの
キーワード引数なので省略可能（横比率と縦比率は、インチサイズ）
‣ fig = plt.figure(figsize=(横比率, 縦比率), facecolor="l色名")

• add_subplotで、個別のグラフ領域（ax）を追加する

‣ ax = fig.add_subplot(行数, 列数, 番号) # 番号は、1番始まり

• 個別のグラフ領域（ax）に対して、plotなどでグラフを描く

‣ ax.plot(x値リスト, y値リスト)

• plt.show()で描画

• 参考：https://python-academia.com/matplotlib-multiplegraphs/

34

https://python-academia.com/matplotlib-multiplegraphs/

matplotlibでのサブグラフを記述法（別方法）
• subplotsを用いたサブグラフの記述

‣ fig, axes = plt.subplots(行数, 列数, figsize=(横比率, 縦比率), facecolor="色名")

‣ axes（個別のグラフ領域配列）は、行数×列数の2次元配列になる

• 各ax（個別のグラフ領域）に、plot関数で値をセットする

‣ 概形：axes[row, col].plot(x値リスト, y値リスト)

‣ 例：axes[0, 1].plot(x_array, y_array, color="blue", label="sample")

• plt.show()で描画

35

個別のグラフ領域の属性設定
• 個別のグラフ領域（ax）の属性は以下のような設定が
可能
‣ ax.set_facecolor(色名または色指定)

… 背景色の設定

‣ ax.set_xlim([下限値, 上限値])

… x軸の下限値と上限値の指定

‣ ax.set_ylim([下限値, 上限値])

… y軸の下限値と上限値の指定

‣ ax.set_xticks(リストまたは配列)

… x軸の目盛りの値

‣ ax.set_yticks(リストまたは配列)

… y軸の目盛りの値

‣ ax.set_xticklabels(リストまたは配列)

… x軸の目盛りのラベルの値

‣ ax.set_xticklabels(リストまたは配列)

 … y軸の目盛りのラベルの値

‣ ax.set_xlabel(タイトル文字列)

… x軸のタイトル

‣ ax.set_ylabel(タイトル文字列)

… y軸のタイトル

‣ ax.set_title(タイトル文字列)

 …グラフ領域のタイトル

‣ ax.set_legend()
… 系列の凡例の表示

loc=配置文字列　も指定可能（"upper left", "upper

right", "lower left", "lower right", "upper center",
"lower center", "center left", "center right", "center",
"best"のいずれか)

36

matplotlibで使える色
• 使える色名は、右の図の通り

‣ https://matplotlib.org/stable/gallery/color/named_colors.html

• タプルで指定する

‣ 0以上, 1以下 の float 値の RGB または RGBA のタプル

- 例: (0.1, 0.2, 0.5) または (0.1, 0.2, 0.5, 0.3))。

• 文字列で指定する

‣ 16 進数の RGB または RGBA 文字列 (例: '#0F0F0F' または

'#0F0F0F0F')。

• 文字列の縮小表現

‣ 各文字を複製することで得られる 16 進数の RGB または RGBA 文字
列

- 例: '#abc'は、'#aabbcc' と同等、 '#abcd'は、'#aabbccdd' と同等

• グレーレベルは、0以上,1以下 の浮動小数点値の文字列表現

‣ 例: '0.5

• 単一の文字列で色合いの短縮表記である

‣ {'b'、'g'、'r'、'c'、'm'、'y'、'k'、'w'} は、それぞれ
青、緑、赤、シアン、マゼンタ、黄、黒、白に対応する

37

https://matplotlib.org/stable/gallery/color/named_colors.html

matplotlibで使えるフォント
• matplotlibがインストールされたときに入っているフォントしか使えない

• matplotlibのフォントキャッシュを更新する方法も書かれているが、一番無難なのは、一度アンインストールし
て、再インストールする方法

• fontが使えるかどうかは、以下でチェックすることができる

‣ import matplotlib.font_manager
‣ matplotlib.font_manager.findfont(フォント名, rebuild_if_missing=True)

• グラフのタイトルなどを設定するときは、**fontdictを指定する

‣ fontdictには、次のような指定ができる。

{'font name': フォント名の文字列, 'fontsize': サイズ, 'fontweight': ウェイト, 'color': カラー,

'verticalalignment': 'baseline', 'horizontalalignment': loc}
‣ locはいかのどれかから{'center', 'left', 'right'}、デフォルトは、'center'

• 設定例：

‣ tfont = {'fontname':'Segoe UI Historic', 'fontsize': 24}
‣ ax.set_title(t, **tfont)

38

他のグラフのスタイル
• fig, ax = plt.subplots()などで、ax（個別のグラフ領域
の確保）を得ておく

• ax.plotの代わりに、以下のような関数で描画ができる

‣ 散布図

ax.scatter(x値のリスト, y値のリスト, s=大きさリス
ト, c=色リスト, vmin=最小値, vmax=最大値)

‣ 棒グラフ

ax.bar(x値のリスト, y値のリスト, width=幅,

edgecolor="色名", linewidth=線幅)

‣ 茎図

ax.stem(x値のリスト, y値のリスト)

‣ 垂直水平だけの折れ線図

ax.step(x値のリスト, y値のリスト, linewidth=線幅)

‣ 幅のある領域図（透明度は0.0～1.0）

ax.fill_between(x値のリスト, 上限のy値のリスト,

下限のy値のリスト, alpha=透明度, linewidth=0)

‣ 重ね図

ax.stackplot(x値のリスト, ２次元のy値のリスト)

2次元のy値のリストは、複数のy値のリストから
np.vstack関数を使って作る感じ

• 軸の設定（背景に8x8の線が描かれる）

‣ ax.set(xlim=(0, 8), xticks=np.arange(1, 8),
ylim=(0, 8), yticks=np.arange(1, 8))

• 参照
‣ https://matplotlib.org/stable/plot_types/basic/

index.html

39

https://matplotlib.org/stable/plot_types/basic/index.html
https://matplotlib.org/stable/plot_types/basic/index.html

matplotlibでグラフ領域に複数の範囲を持つグラフを表示

• twinx()関数を用いて、2つのグラフに対して、関連性を持たせる

‣ 例：fig, ax1 = plt.subplots()

 ax2 = ax1.twinx()

• それぞれのグラフを設定する
‣ 例：ax1.plot(x_list, ax1_y_list, label="plot graph")

ax2.bar(x_list, ax2_y_list, width=25, label="bar graph") # 2つ目は棒グラフ

ax1.set_ylim([ax1_min_value, ax1_max_value]) # 軸の範囲の設定
ax2.set_ylim([ax2_min_value, ax2_max_value]) # 軸の範囲の設定

• 参照：https://datumstudio.jp/blog/matplotlib-2軸グラフの書き方/

40

https://datumstudio.jp/blog/matplotlib-2%E8%BB%B8%E3%82%B0%E3%83%A9%E3%83%95%E3%81%AE%E6%9B%B8%E3%81%8D%E6%96%B9/

sympyによる数式の指定
• import sympy as sym
• symを頭につけたくない場合は、from sympy import *

• 変数を指定する
‣ x = symbols("x") … xを数式の変数に指定　varでも良い

‣ var("x y z") … x, y, zを数式の変数に指定
• 数式（関数）を指定する

‣ f = x ** 2 + 3 * x + 1 … 指定された変数を使って
• 用いることができる基本的な数学関数や値

‣ pi, E … 円周率、自然対数の底

‣ sin(x), cos(x), tan(x), cot(x), sec(x), csc(x)…三角関数

‣ asin(x), acos(x), atan(x), acot(x), asec(x), acsc(x)… 逆三角関数

‣ sinh(x), cosh(x), tanh(x), coth(x), sech(x), csch(x) … 双曲線関数

‣ asinh(x), acosh(x), atanh(x), acoth(x), asech(x), acsch(x)… 逆双曲線関数

‣ log(x), log(x, b), …対数関数

‣ exp(x), Pow(x, n), sqrt(x), root(x, b)…指数関数

‣ Abs(x), sign(x) , floor(x), ceiling(x), factorial(n), binomial(n, k)… 絶対値、 符号関数（-1, 0, 1 を返す）、 床関数、 天井関数、 階乗、二項係数

41

sympyによる方程式・不等式の指定
• 方程式
‣ Eq(式, 式)…式 = 式であるような方程式を定義することができる

- 例：eq1 = Eq(x**2 + 3, 2) # x**2 + 3 == 2

‣ Ne(式, 式)…式 ≠ 式であるような方程式を定義することができる
• 不等式
‣ Gt(式, 式)…式 < 式であるような不等式を定義することができる

‣ Ge(式, 式)…式 ≧ 式であるような不等式を定義することができる

‣ Lt(式, 式)…式 > 式であるような不等式を定義することができる

‣ Le(式, 式)…式 ≦ 式であるような不等式を定義することができる

42

sympyによる数式演算
• xの値によって、fの値を求める

‣ f.subs(x, 2) …x = 2のときのfの値

• fの値によって、xの値を求める

‣ solve(sym.Eq(f, value), x) …f = valueのときのxの値

‣ solve(f, x)…f = 0のときのxの値
• 因数分解する
‣ f.factor()…fの因数分解

• 式の展開
‣ f.expand() …因数分解の形で書かれた式を展開する

• テイラー展開
‣ f.series(n=12)…fのテイラー展開を12の次数まで求める

‣ O(次数)の誤差を表示してくれるが、取るためには、removeO()関数を使う

43

sympyによる数式の簡単化
• 数式を簡単にする関数…simplify()

• 分母に平方根とか入っている分数を有理化する関数…radsimp()

• 小数を分数の形で表現させる…nsimplify(実数値)

44

sympyの数式描画
• jupyterなどでは、sympyでの数式を数学の式のように描画させることが可能にな
っている

• sympyでの表示準備

‣ import sympy
‣ sympy.init_printing()

• IPythonでの表示関数display

‣ from IPython.display import display
‣ display(数式など)

• 参照：https://qiita.com/ceptree/items/3668ca52f8621b13bbc2

45

sympyあるある
• Qiita「sympyあるある」より

‣ 参照 Webページ

https://qiita.com/tehen_/items/
b86730bfd0d98236d056

‣ from sympy import * が行なわれている
と仮定

• 平方根と二乗の展開をさせる
‣ x = symbols("x"); print(sqrt(x ** 2))

- sqrt(x**2)と表示されてしまう

‣ y = symbols("y", positive=True);
print(sqrt(y ** 2))
- yと表示される

• 分数をそのまま表示させる
‣ Rational(整数, 整数) あるいは

Rational(実数)

‣ print(1/2) # 0.5となってしまう

‣ print(Rational(1, 2)) # 1/2と表示される

‣ print(Rational(0.625)) # 5/8と表示され
る

‣ print(Rational(0.4)) # 実数は、誤差が
あるため、うまく表示されない

3602879701896397/9007199254740992

46

https://qiita.com/tehen_/items/b86730bfd0d98236d056
https://qiita.com/tehen_/items/b86730bfd0d98236d056

sympyによる微分・積分・定積分
• 微分形を求める

‣ f.diff() …fの微分形
‣ 例：

f1 = (x**2+3*x+2)**3 + 4*x**4 + 2*x**5

print(f1.expand())
x**6 + 11*x**5 + 37*x**4 + 63*x**3 + 66*x**2 + 36*x + 8
print(f1.expand().diff())
6*x**5 + 55*x**4 + 148*x**3 + 189*x**2 + 132*x + 36
print(f1.diff())
10*x**4 + 16*x**3 + (6*x + 9)*(x**2 + 3*x + 2)**2

f2 = sin(x) **2 + sqrt(3) *cos(x)**2
print(f2.diff())
-2*sqrt(3)*sin(x)*cos(x) + 2*sin(x)*cos(x)

• 積分形を求める
‣ integrate(f, x)…fの積分形

‣ 例：
print(integrate(f1, x))
x**7/7 + 11*x**6/6 + 37*x**5/5 + 63*x**4/4 + 22*x**3 +
18*x**2 + 8*x

print(integrate(f2, x))
x/2 + sqrt(3)*(x/2 + sin(x)*cos(x)/2) - sin(x)*cos(x)/2

• 定積分の値を求める
‣ integrate(f, (x, a, b))…xが下限aから上限bまでの間のfの
定積分値を求める

‣ 例：
print(integrate(f1, (x, 2, 4)))
780468/35
print(integrate(f2, (x, rad(0), rad(90))))
pi/4 + sqrt(3)*pi/4

∫
b

a
f(x)dx

47

sympyによる定積分と積分について
• integrate関数を呼び出すときに、２番目のパラメータを(変数, 下限, 上限)の３つの要素から成るタプルにして求める

• 例：

 import sympy as sym
 x = sym.symbols("x")
 f = x ** 3 + x ** 2 + x + 3
 print(sym.integrate(f, (x, -4, 3)))

• また、不定積分であれば、数式の、integrateメソッドを呼び出すことでも、実行できる

‣ f.integrate() …xを指定する必要はない
• 不定積分は、簡単そうに見える関数でも、特殊関数を必要とする場合がある
• 例：sym.integrate(sym.cos(x**2), x) …flesnelc関数とgamma関数を必要とする

‣ fresnelc関数…https://docs.sympy.org/latest/modules/functions/

special.html#sympy.functions.special.error_functions.fresnelc
‣ gamma関数…https://docs.sympy.org/latest/modules/functions/special.html#module-

sympy.functions.special.gamma_functions

48

https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.error_functions.fresnelc
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.error_functions.fresnelc
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.error_functions.fresnelc
https://docs.sympy.org/latest/modules/functions/special.html#module-sympy.functions.special.gamma_functions
https://docs.sympy.org/latest/modules/functions/special.html#module-sympy.functions.special.gamma_functions
https://docs.sympy.org/latest/modules/functions/special.html#module-sympy.functions.special.gamma_functions

方程式の解・連立方程式の解
• 方程式の解

from sympy import *
var('x, a, b')
sol=solve (a*x+b, x)
init_printing()
display(sol[0])

• Eq関数で、方程式を作成することが可能
‣ 例：

eq = Eq(2*x**2+2*x+3, 4)

• 連立方程式の解
‣ solve(方程式のリスト, 変数のリスト　)で求め
ることができる

‣ 例：
import sympy as sym
sym.var('x, y, a, b, c, d, e, f')
eq1=sym.Eq(a*x+b*y, e)
eq2=sym.Eq(c*x+d*y, f)
sym.solve ([eq1, eq2], [x, y])

• 連立方程式は、一次でなくても構わない。
eqs = [Eq(3*x**2+2*y**2, 72), Eq(x+y,16)]
print(solve(eqs, [x, y]))

• 参考Webページ

https://pianofisica.hatenablog.com/entry/
2019/04/04/233515

2x2 + 2x + 3 = 4

49

https://pianofisica.hatenablog.com/entry/2019/04/04/233515
https://pianofisica.hatenablog.com/entry/2019/04/04/233515

不等式の解・連立不等式の解
• 条件・範囲を示す関数がいくつか用意されている
‣ Gt(a, b), Lt(a, b), Ge(a, b), Le(a, b), Ne(a, b)

…比較関数

‣ And(x, y), Or(x, y), Not(x) …論理関数
• 例：

ineq1 = Ge(x, 2) # x >= 2
ineq2 = Le(y, 5) # y <= 5
ineq3 = Eq(x + y, 7) # x + y = 7
ineq4 = Ne(x, y) # x ≠ y

• 連立不等式は、1つの変数の解しか求められない
• 例：

ineq_xy = [Gt(2*x+7*y, 12), Lt(-3*x+2*y, -12)]
print(solve(ineq_xy, [x]))
(x > 6 - 7*y/2) & (x > 2*y/3 + 4)

• 連立不等式で、解の範囲を求めるには、
sympy.plotting.plot_implicitを利用する

• 例：
from sympy.plotting import plot_implicit
ineq1 = x**2 - 4 < 0 # x > -2 and x < 2
ineq2 = y + x < 5 # y < 5 - x

解の範囲のプロット

plot_implicit(And(ineq1, ineq2), (x, -5, 5), (y, -10,
8))

50

sympyで偏微分・3次元ベクトル
• 偏微分は、dif(変数)あるいはdif(変数, 変数, ...)で求めることができる。

• 例：

‣ tf1 = sin(x) * cos(y) * z**4
‣ print(tf1.diff(x))
‣ print(tf1.diff(z))
‣ print(tf1.diff(x, y))
‣ print(tf1.diff(x, y, z))

• 以下の3次元ベクトルで用いられる勾配、発散、回転は、3次元座標系において
求めるので、3次元座標を定義する必要がある。

‣ 例： N = CoordSys3D('N')

‣ # 3次元の座標系を定義（文字列は何でも良い）

• 3次元の座標系を定義すると、単位ベクトルと成分値が記述できる

‣ N.i, N.j, N.k…それぞれの方向の単位ベクトル

‣ N.x, N.y, N.z…それぞれの方向の成分値

• 勾配は、sympy.vectorモジュールのgradient(f)で求まる、

• 発散は、sympy.vectorモジュールのdivergence(vector)で求まる。

• 回転（rot）は、sympy.vectorモジュールのcurl(vector)で求まる。

• 例：
from sympy import *
from sympy.vector import *
N = CoordSys3D('N') # 3次元の座標系

x, y, z = symbols('x y z')

f = N.x**2 + N.y**2 + N.z**2 # 関数を定義

print(gradient(f))
2*N.x*N.i + 2*N.y*N.j + 2*N.z*N.k

v = N.i*N.x*N.y+N.j*N.z*N.y+N.k*N.x*N.z # ベクトルを定義

print(divergence(v))
N.x + N.y + N.z
print(curl(v))
(-N.y)*N.i + (-N.z)*N.j + (-N.x)*N.k

∇f = (∂f
∂x

,
∂f
∂y

,
∂f
∂z)

∇ ⋅ F =
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z

∇ × F =

i j k
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

51

sympyの関数のプロット
• plottingモジュールのplot関数でプロットすることができる

• plot(関数, (変数, 下限, 上限))

• 例：

 import sympy as sym
　import sympy.plotting as plt
 x = sym.symbols("x")
 f = sym.sin(x)
 plt.plot(f, (x, -sym.pi, sym.pi))

52

陰関数・パラメトリック関数曲線のプロット
• import指定

‣ from sympy.plotting import * を仮
定

• 陰関数
‣ x**2 + y**2 = r**2より、r=2として

f = x ** 2 + y ** 2 - 2 ** 2
‣ plot_implicit(f, (x, -2, 2), (y, -2, 2))

‣ 次の関数もプロットしてみる
‣ f = x ** 2 + y ** 2 + x/y - 2 ** 2

…弧状のグラフになる

‣ f = 2 * x ** 2 + 5 * y ** 2 - 3 * x*y - 2
** 2
…斜めの楕円グラフになる

• パラメトリック関数
‣ t = symbols("t")
‣ plot_parametric(cos(t), sin(t), (t, 0,

2*pi))

53

sympy.plottingで複数の関数のグラフを表示する方法
• 変数 = plt.plot(...., show= False)にして代入しておく、代入後はリストになっている

• 変数にappend()で追加する（追加するグラフもリストなので、先頭の要素をインデ
ックスで指定する）

• 最後に、最初のグラフをshow()関数で表示させる

• 例：

import sympy.plotting as plt
p1 = plt.plot(sin(x) + cos(x), (x, -pi, pi), show=False)
p2 = plt.plot(sin(x), (x, -pi, pi), line_color="r", show=False)
p1.append(p2[0])
p1.show()

54

sympyでサブグラフとして描画する
• 同じように、plotする際に、show=Falseの指定をしておく

• PlotGrid関数を用いる

‣ PlotGrid(行数, 列数, プロットオブジェクトのシーケンス)
• 例：

import sympy.plotting as plt
p1 = plt.plot(sin(x) + cos(x), (x, -pi, pi), show=False)
p2 = plt.plot(sin(x) * cos(x), (x, -pi, pi), line_color="r", show=False)
plt.PlotGrid(1, 2, p1, p2)

55

sympyによる行列クラスの演算
• from sympy import *

• Matrixクラスのオブジェクトを作成

‣ 書式：
- Matrix(入れ子型のリストやタプル)

- Matrix(行数, 列数, 1次元のリストやタプル)

‣ 例：
- Matrix([[1,0,0], [0,0,0]])
- Matrix([[1, 2, 3]])
- Matrix(2, 3, [1, 2, 3, 4, 5, 6])
- Matrix(3, 4, lambda i, j: 1 - (i+j) % 2)

• 正方行列でzero行列、1行列、単位行列を作成

‣ zeros(次数), ones(次数), eye(次数)

‣ diag(対角成分の並び) … 対角行列を作成、並びの成分にはMatrixのオブジェクトも可能

• 基本的には、scipy, numpyと同様の関数が利用することができるが、詳しくは、以下を参照

‣ https://showa-yojyo.github.io/notebook/python-sympy/matrices.html

56

https://showa-yojyo.github.io/notebook/python-sympy/matrices.html

sympyの行列の要素のアクセス
• 以下で、Mは、sympyのMatrixオブジ
ェクトを示す

• インデックスによるアクセス
‣ 1次元：M[idx]

‣ 2次元：M[row, col]
• スライスによるアクセス
‣ M[start: end] -- start endは省略可能

‣ M[start: end: step] -- stepがある場合

‣ 右辺にある→コピー、左辺にある→
ビュー

• 各行・各列にアクセス

‣ M[row, :] … row番目の行ベクトル

‣ M[:, col] … col番目の列ベクトル

‣ M[r1:r2, c1:c2] … 部分的な行列
• 各要素に関数を適用
‣ M.applyfunc(関数名あるいは無名関
数)

• 要素の個数を求める
‣ len(M) …すべての要素の総数

‣ len(M[:, 0])…行数

‣ len(M[0,:])…列数

57

sympyの行列に対する変更演算
• 以下で、M, Nは、sympyのMatrixオブジェクトを示し、n, mは列や行のインデックスを示す

• 連結

‣ 複数の行列を横に連結した行列を生成：M.hstack(M, N,)

‣ 複数の行列を縦に連結した行列を生成：M.vstack(M, N,)

‣ 行列に列を挿入した行列を生成：M.col_insert(n, N)

‣ 行列に行を挿入した行列を生成：M.row_insert(m, N)

‣ 行列同士を縦に連結した行列を生成（下に連結）：M.col_join(N)

‣ 行列同士を横に連結した行列を生成（右に連結）：M.row_join(N)

‣ 行を指定の置換で入れ替えた行列を生成：M.elementary_row_op(op="n<->m", row1=m, row2=m))

‣ 列を指定の置換で入れ替えた行列を生成：M.elementary_col_op (op="n<->m", col1=m, col2=m)

• 列空間・行空間
‣ 行列を列ベクトルに分解した列空間（行列の列ベクトルによって張られるベクトル空間）のリストを返す：

M.columnspace()
‣ 行列を行ベクトルに分解した行空間（行列の行ベクトルによって張られるベクトル空間）のリストを返す：

M.rowspace()

58

sympyの行列演算子・ベクトル演算
• 以下で、M, Nは、sympyのMatrixオブジェ
クトを示す

• 演算子

‣ 要素ごとの加算・減算：M + N, M - N

‣ 行列の積：M*N, M@N -- 演算子では要素
ごとの積（アダマール積）はない

‣ べき乗：M**n

‣ 逆行列：M**-1

• ベクトル演算（ベクトルは、行/列ベクトル
でベクトルを表現）

‣ クロス積（外積）：M.cross(N)

‣ ドット積（内積）：M.dot(N)

‣ 行ベクトルと列ベクトルの積：（行列の
積）*, M.multiply(N)

‣ 列ベクトルと行ベクトルの積：（行列の
積）*, M.multiply(N)

‣ 要素ごとの積：
M.multiply_elementwise(N)

‣ 正規化（大きさを1に）：M.normalized()

-- Mは行/列ベクトルに限る

‣ 直交化基底：GramSchmidt([M, N, ...],

orthonormal=False) -- M, Nは行/列ベクト
ルに限る, orthonormal=Trueにすると基底
ベクトルが正規化（大きさを1に）される

59

sympyの行列演算
• 以下で、M, Nは、sympyのMatrixオブジェクトを示
し、i, jは、行列のインデックスを示す。

• 転置行列
‣ M.T あるいはM.transpose()

• 乗算
‣ 行列の積：M.multiply(N), M*N, M@N

‣ 要素ごとの積：M.multiply_elementwise(N)
• ノルム
‣ ノルム：M.norm()

- 行列はFrobeniusノルム
- ベクトルの場合は、2ノルム

• 行列式
‣ 正方行列：M.det()

‣ Bareisのアルゴリズムで：M.det(method="bareiss"

)

‣ LU分解で行列式を求める：
M.det_LU_decomposition()

• 余因子
‣ 指定がないと、Berkowitのアルゴリズムで求める
形になる。

‣ 余因子行列：M.adjugate()

‣ 余因子行列（転置なし）：M.cofactorMatrix()

‣ 余因子：M.cofactor(i, j)

‣ 小行列：M.minorMatrix(i, j)
• 逆行列
‣ M.inv(method=None)

- methodのキーワード
• "GE": Gaussの消去法による（デフォルト）
• "LU": LU分解による
• "ADJ": 余因子行列と行列式で求める

60

