
第13回講義資料


箕原辰夫

スクリプト言語プログラミング

Pythonによる数値解析



連立方程式の解法
• 直接解法（direct method）と反復解法（iterative method）がある


• 直接解法


‣ ガウスの消去法（Gauss elimination method）


‣ ガウス・ジョルダン法（Gauss Jordan method）


‣ 三角分解法（LU分解：LU factorization、コレスキ—分解：Cholesky factorization、LDL分解）


• 反復解法（iteration method）…元数が多いときに用いられる


‣ ヤコビ（Jacobi）の反復法


‣ ガウス・ザイデル（Gauss Seidel）の反復法


‣ 共役勾配法（conjugate gradient method)

2



ガウスの消去法
• ガウスの消去法（Gaussian elimination）は、連立一次方程式を解く一般的な解法である。


• n元m立一次方程式を考える。右側が対応する拡大係数行列（argumented matrix）となる。


• ガウスの消去法は、連立一次方程式の解法以外にも以下の用途にも用いられる。


‣ 行列の階数の計算


‣ 正則行列の逆行列の計算（ガウス・ジョルダン法）

3

a11x1 + a12x2 +!+ a1nxn = b1
a21x1 + a22x2 +!+ a2nxn = b2

"
am1x1 + am2x2 +!+ amnxn = bm

⎧

⎨

⎪
⎪

⎩

⎪
⎪

a11 a12 ! a1n b1
a21 a22 ! a2n b2
" " # " "
am1 am2 ! amn bm

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥



ガウスの消去法の指針
• 行列に対してガウスの消去法を適用する方法は、行に関する基本変形を行列に可
能な限り繰り返し行なって行列の左下部分の成分を全て 0 にして行列を上三角行
列（upper triangle matrix）に変形していく。


• 行に関する基本変形には、以下のの３種類の操作あるいは変形がある。


‣ 二つの行を入れ替えるもの


‣ ある行を0でない定数倍するもの


‣ ある行に他のある行の定数倍を加えるもの

4



ガウスの消去法の方法
• 前進消去（forward elimination）


‣ 拡大係数行列を上三角形に変形するもので、以下のような漸化式で行列の要素を変形する（ここでは、行と列の添え字
は1から始まるものとする）





‣ なお、上記の漸化式において、j=mから始めると、左下が0になる。j=m+1から始めても、計算自体は求められる


• 後退代入（back substitution）


‣ 上三角に変形された行列から、下の行から各変数の値を求めていくもので、以下のような式で求めることができる


′aij = aij − aim
amj
amm

, m = 1,2,!n−1 i = m+1,m+ 2,!n j = m+1,m+ 2,!,n+1

xn =
′an,n+1
′ann

xi =
′ai,n+1 − ′ai,i+ j xi+ j

j=1

n−i

∑
′aij

i = n−1,!,2,1

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

5



ガウスの消去法の例
• 以下の連立方程式を解く


‣ 2x - 3y + z = 1


‣ x + 2y - 3z = 4 


‣ 3x + 2y -z = 5


• m = 0...2までの係数行列の変化


⎡ 2.00 -3.00  1.00  1.00 ⎤　　(1)


⎢ 1.00  2.00 -3.00  4.00 ⎥　　(2)


⎣ 3.00  2.00 -1.00  5.00 ⎦　　(3)


⎡ 2.00 -3.00  1.00  1.00 ⎤　　


⎢ 0.00  3.50 -3.50  3.50 ⎥　　(2') = (2) - (1) × 1/2


⎣ 0.00  6.50 -2.50  3.50 ⎦　　(3') = (3) - (1) × 3/2


⎡ 2.00 -3.00  1.00  1.00 ⎤


⎢ 0.00  3.50 -3.50  3.50 ⎥


⎣ 0.00  0.00  4.00 -3.00 ⎦　　(3'') = (3') - (2') × 
6.5 / 3.5


• 答え：[x, y, z] = [ (1+3*1/4+1*3/4)/2, 

(3.5+3.5*-3/4)/3.5, -3/4] = [1.25, 0.25, -0.75]

6



Gaussの消去法のアルゴリズム（前進消去）
• Python的に記述すると、次のような形になる、aは拡大係数行列とする：a[ 0～

n-1 ]が、行列の各行、a[ i ][ 0～n-1 ]が各変数への係数項、a[ i ][ n ]が定数項とす
る


• 前進消去の部分 

for m in range( n-1 ): # 0行からn-2行まで 

    for i in range( m+1, n ): # m+1行からn-1行まで 

          r = a[ i ][ m ] / a[ m ][ m ] # ピボットから係数を求める 

          for j in range( m, n+1 ): # m列からn列まで 

              a[ i ][ j ] -= a[ m ][ j ] * r  # ピボットのある行の係数倍を引く 

7



pivotの選択（pivoting）
• 前進消去を進める際に、行列の対角要素の係数項が0になって
しまい、求められない場合がある


• 対角要素の係数項の絶対値が小さい場合も、桁落ちが発生し
てしまい誤差が増大することが考えられる


• 前進消去に使われる対角要素のことをピボット（pivot）と呼
ぶが、ピボットとして選ばれる係数項の絶対値が最大になる
ように、同じ列の別の行と取り換えるという操作を行なう


• この処理を、枢軸選択法（pivotal elimination method）ある
いはピボッティング（pivoting）と呼ぶ


• ピボット選択を行なう、0となる対角要素がある場合でも前進
消去が可能であるし、対角要素の係数項の絶対値が小さい場
合でも、精度をあげることができる


• 他の行の同じ列で取り換えるものを部分的ピボッティング
（partial pivoting）と呼び、行と列の両方で入れ替えを行な
うものを完全ピボッティング（complete pivoting）と呼ぶ。

列を入れ替えた場合、変数の順番も交替になるので、注意が
必要である。


• Pythonでのプログラミング例


def pivoting( a, m ):   
# 拡大係数行列のm列目のpivotingを行なう


    maxi = m # 仮にm行目が最大値を持つとする


    for p in range( m+1, n ):   
       # m行以降、最大値のある行のインデックスを 

        maxiに求める


        if abs( a[p][m] ) > abs( a[ maxi ][ m ] ):  maxi = p  
        # より絶対値が大きい係数項が見つかったら乗り換え


    if a[ maxi ][ m ]  == 0 : raise Exception 
    # m列目の係数がすべて0の場合


    a[ maxi ], a[ m ] = a[ m ], a[ maxi ]  # 行の入れ替え

8



Gaussの消去法のアルゴリズム（後退代入）
• 後退代入の部分の漸化式から各変数の値を求めていく。一番下の行から求めてい
く形になる


• Pythonでの記述例: x[ 0～n-1 ]に解を求める 

if a[ n-1 ][ n-1 ] == 0:  raise Exception # 一意の解なし 

x[ n-1 ]  = a[ n-1 ][ n ] / a[ n-1 ][ n-1 ]  # 最初の解 

for i in range( n-2, -1, -1 ): # 下から上に向かって 

    summ = 0 
    for j in range( i, n ): # 既知の変数の値を使って足していく 

        summ += a[ i ][ j ] * x[ j ] 
    x[ i ] = (  a[ i ][ n ]  - summ ) / a[ i ][ i ]

9



ガウスの消去法による行列の階数の計算
• 係数行列にガウスの前進消去を適用した場合、下の方の行の要素がすべて0にな
ってしまう場合がある。このときは、一意の解は求まらない。


• 0でない要素が詰まっている行までの行数を数えると、それが行列の階数
（rank）になっている。


• 行列にガウスの前進消去を適用すると上三角行列になるが、上三角行列の場合
は、一般的に、その対角成分の積を取れば、その上三角行列の行列式を求めるこ
とができる（元の行列の行列式が求められるわけではない）

10



ガウス・ジョルダン法
• ガウス・ジョルダン法（Gauss-Jordan method）は、掃出し法（sweeping-out method, row reduction）とも呼ばれる


• ガウスの消去法と似ているが、ガウスの消去法での前進消去を、ピボット行を除くすべての行に適用したものになる、
ピボット行はピボットの値で割っていく


• 次の漸化式を拡大係数行列に適用し、各要素を求めていく





• 拡大係数行列に適用した結果は、次のような行列になる


′aij =
aij
amm

(i = m)

′aij = aij − amj
aim
amm

(i ≠ m)

⎧

⎨

⎪
⎪

⎩

⎪
⎪

m = 1,2,!,n

1 0 ! 0 a(n)1,n+1
0 1 ! 0 a(n)2,n+1
! ! " ! !
0 0 # 1 a(n)n,n+1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

where ′aij = aij
(1) , ′′aij = aij

(2) ,!

11



ガウス・ジョルダン法のアルゴリズム
• 基本的には、前進消去が中心となる（解は、拡大係数行列の定数項の縦の列に求めら
れる）


• Pythonでの記述例：


• aは拡大係数行列とする：a[ 0～n-1 ]が、行列の各行、a[ i ][ 0～n-1 ]が各変数への係数
項、a[ i ][ n ]が定数項とする


    for m in range( n ):


        for i in range( n ):


            r = a[ i ][ m ] / a[ m ][ m ] if m != i else 1.0 / a[ m ][ m ]


            for j in range( len(a[i] )):


                a[i][j] = a[i][j] * r  if m == i  else  a[i][j] - a[m][j] * r

12



ガウス・ジョルダン法の例
• 以下の連立方程式を解く


‣ 2x - 3y + z = 1


‣ x + 2y - 3z = 4 


‣ 3x + 2y -z = 5


• m = 0...2までの係数行列の変化


⎡ 2.00 -3.00  1.00  1.00 ⎤   (1)


⎢ 1.00  2.00 -3.00  4.00 ⎥   (2)


⎣ 3.00  2.00 -1.00  5.00 ⎦   (3)


⎡ 1.00 -1.50  0.50  0.50 ⎤   (1') = (1) / 2


⎢ 0.00  3.50 -3.50  3.50 ⎥   (2') = (2) - (1) / 2


⎣ 0.00  6.50 -2.50  3.50 ⎦   (3') = (3) - (1) × 3 / 2


⎡ 1.00  0.00 -1.00  2.00 ⎤   (1'') = (1')  - (2') × -1.5 / 3.5


⎢ 0.00  1.00 -1.00  1.00 ⎥   (2'') = (2') / 3.5


⎣ 0.00  0.00  4.00 -3.00 ⎦   (3'') = (3') - (2') × 6.5 / 3.5


⎡ 1.00  0.00  0.00  1.25 ⎤   (1''') = (1'') - (3'') × -1.0 / 4.0


⎢ 0.00  1.00  0.00  0.25 ⎥   (2''') = (2'') - (3'') × -1.0 / 4.0


⎣ 0.00  0.00  1.00 -0.75 ⎦   (3''') = (3'') / 4


13



逆行列の求め方
• ガウス・ジョルダン法を用いて、n次の正方行列の逆行列（正則行列の場合）を
求める方法


• 正方行列Aの行列式|A|について


‣ |A|=0のとき、Aを特異行列（singular matrix）


‣ |A|≠0のとき、Aを正則行列（regular matrix）と呼ぶ


• AX = Iを満足する行列を求める、拡大行列[A | I ]に対してガウス・ジョルダン法
を用いて、[ I | A' ]になるように変形する。このときのA' = A-1となる

14



ガウスジョルダン法で逆行列を求めた例
• 次の3次の正方行列の逆行列を求める


⎡  2.0   1.0   7.0 ⎤

⎢  9.0   5.0   6.0 ⎥

⎣  2.0   1.0   6.0 ⎦


• m=0...n-1での行列の変遷


⎡  2.0   1.0   7.0   1.0   0.0   0.0 ⎤    (1)

⎢  9.0   5.0   6.0   0.0   1.0   0.0 ⎥    (2)

⎣  2.0   1.0   6.0   0.0   0.0   1.0 ⎦    (3)


⎡  1.0   0.5     3.5   0.5   0.0   0.0 ⎤    (1') = (1) / 2

⎢  0.0   0.5 -25.5  -4.5   1.0   0.0 ⎥    (2') = (2) - (1) × -9/2

⎣  0.0   0.0   -1.0  -1.0   0.0   1.0 ⎦    (3') = (3) - (1) × -2/2


⎡  1.0   0.0  29.0   5.0  -1.0   0.0 ⎤     (1'') =  (1') - (2') × 
0.5/0.5

⎢  0.0   1.0 -51.0  -9.0   2.0   0.0 ⎥     (2'') = (2') / 0.5

⎣  0.0   0.0   -1.0  -1.0   0.0   1.0 ⎦     (3'') = (3') - (2') × 
-0.0/0.5


⎡  1.0   0.0   0.0 -24.0  -1.0  29.0 ⎤     (1''') = (1'') - (3'') × 
29.0/-1.0

⎢  0.0   1.0   0.0  42.0   2.0 -51.0 ⎥     (2''') = (2'') - (3'') × 
-51.0/-1.0

⎣ -0.0  -0.0   1.0    1.0  -0.0  -1.0 ⎦     (3''') = (3'') / -1.0


15



numpyにおける連立一次方程式の解
• numpy.linalgパッケージのsolve関数を用いる


• 使用例：


import numpy as np


a = np.array( [[3, 2, 0], [1, -1, 0], [0, 5, 1]] ) 
b = np.array( [2, 4, -1] ) 
x = np.linalg.solve( a, b ) 
print( x ) 

• 結果：


[ 2. -2.  9.]

16



scipyにおける連立一次方程式の解
• scipyでは、linalgパッケージのsolve関数が連立一次方程式の解を求める。入力パ
ラメータや、結果は、numpyの配列を用いる


• たとえば、以下のように記述する 

import numpy as np 
from scipy import linalg as linalg 
 
a = np.array( [[3, 2, 0], [1, -1, 0], [0, 5, 1]] ) 
b = np.array( [2, 4, -1] ) 
x = linalg.solve( a, b ) 
print( x ) 
 
→ array([ 2., -2.,  9.])

17



sympyにおける連立一次方程式の求解
• solve関数は、連立方程式にも適用で
きる


• 例： 

import sympy 
sympy.var('x, y') 
eq1=sympy.Eq(2*x+1*y, 3) 
eq2=sympy.Eq(1*x+3*y, 4) 
sympy.solve ([eq1, eq2], [x, y]) 


• また、2次以上の連立方程式にも適用
が可能になっている。


• 例： 

import sympy 
sympy.var('x, y, a, b, c, g, h') 
eq3=sympy.Eq(y, a*x**2+b*x+c) 
eq4=sympy.Eq(y, g*x+h) 
sympy.solve ([eq3, eq4], [x, y])


• 参考：https://

pianofisica.hatenablog.com/entry/
2019/04/04/233515

18



sympyにおける行列を用いた連立一次方程式の求解
• Gauss Jordan法による求解の関数が用意されている


• 行列.gauss_jordan_solve(定数項の列ベクトル)


• 戻り値は、(解の列ベクトル, パラメータ )のタプルで、パラメータは、解が一意に定まらないときの、変
数項を示す


• 使用例：


from sympy import Matrix


A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])


B = Matrix([3, 6, 9])


sol, params = A.gauss_jordan_solve(B)


sol


→  Matrix([[-1],[ 2],[ 0]])


19



LU分解
• LU分解とは、n元一次連立方程式の係数行列である正方行列Aを下三角行列Lおよび上三角行列Uに分解することである


• Uの対角成分を1にする方法は、クラウト法（Cround Method）と呼ばれ、Lの対角成分を1にする方法は、ドゥーリトル
法（Doolittle Method）と呼ぶ


•  A=LUを保つ





• LU分解をすると、次にような応用が利く


‣ 連立一次方程式の解をLUで求めることができる


‣ 逆行列を求めることができる


‣ 行列式を簡単に求めることができる

A =

a11 a12 ! a1n
a21 a22 ! a2n
" " # "
an1 an2 ! ann

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= LU =

l11 0 ! 0

l21 l22 ! 0

" " # "
ln1 ln2 ! lnn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1 u12 ! u1n
0 1 ! u2n
" " # "
0 0 ! 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

20

https://en.wikipedia.org/wiki/Crout_matrix_decomposition
https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/LU_decomposition


LU分解のための計算式
• 行列Lと行列Uの各要素は以下の式に
よって計算できる（クラウト法：
Crout Method）


• なお対角成分の1は、並べ替え行列
（Permutation）Pによって、Lの方に
入れられることもある、その際は、
PA = LUという形になる





lij = 0 (i < j)

lij = aij − likukj
k=1

j−1

∑ (i ≥ j)

⎧

⎨
⎪⎪

⎩
⎪
⎪

uij = 0 (i > j)

uij = 1 (i = j)

uij =
aij − likukj

k=1

i−1

∑
lii

(i < j)

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

21



LU分解による連立1次方程式の解法
• LU分解された行列Aにおける連立1次方
程式は、以下の式のように記述できる





• Ux=yとおくと、次のように記述できる





• これらの式から以下の手順で解を求め
る


1. Lと定数項の列ベクトルbから、yの列
ベクトルを求める（前進消去）


2. Uと列ベクトルyから、xの列ベクトル
を求める（後退代入）


• それぞれの列ベクトルの各要素は以下の
ように求める





Ax = LUx = b

Ly = b
Ux = y

⎧
⎨
⎪

⎩⎪

yi =
bi − lij y j

j=1

i−1

∑
lii

(i = 1,!,n)

xi = yi − uijx j
j=i+1

n

∑ (i = n,n−1,!1)

22



LU分解による行列式と逆行列の求め方
• 行列式は、以下のように求められる
（クラウト法の場合）





• 逆行列は、以下の式からLとUの逆行
列の積として求められる




• クラウト法に場合、それぞれの逆行列
は以下のようにして求められる








参照：https://qiita.com/mnanri/items/

f0e9b20395545dd674c9

det(A) = det(LU ) = det(L) ⋅det(U ) = l11l22!lnn

A−1 = (LU )−1 =U −1L−1

L−1 : llij =

if i = j : 1
lij

if i < j : 0

if i > j : −
∑j−1

k=1 ljkllki

lii

U−1 : uuij =

if i = j : 1
if i < j : 0

if i > j : − ∑i−1
k=j ujkuuki

23

https://qiita.com/mnanri/items/f0e9b20395545dd674c9
https://qiita.com/mnanri/items/f0e9b20395545dd674c9
https://qiita.com/mnanri/items/f0e9b20395545dd674c9


scipyによるLU分解と求解
• linalgパッケージにLU分解をするlu関数
がある PA = LUで求められるP, L, Uを返
す


• linalgパッケージには、更に、lu_factor

関数によってLU分解された行列（右上
三角部分がU、左下三角部分がL）を用
いて、解を求めるlu_solve関数がある。


• 例：


import scipy.linalg as linalg


import numpy as np


A = np.array([[6, 4, 1], [1, 8, -2], [3, 2, 
0]])


b = np.array([7, 6, 8])


p, l, u = linalg.lu( A )  # LU 
decomposition


LU, piv = linalg.lu_factor( A )  # LU 
factorization, pivot indices


x = linalg.lu_solve( LU, b )  # LU solve 
with LU factorization


print(LU, x)


24https://org-technology.com/posts/solving-linear-equations-LU.html

http://linalg.lu


sympyによるLU分解と求解
• from sympy.matrices import *


• 行列.LUdecomposition()…LU分解され
た行列のタプルを返す
A.LUdecomposition()では、PA = LUと
なるようなL, U, Pを返す。 

PはPermutationであり、
eye(A.row).permuteFwd(P)で計算され
る、Pが必要ないときは空リストで返
される


• 行列.LUSolve( 定数項列ベクトル )…

LU分解による変数の求解


• 使用例：


a = Matrix( cofmat )


b = Matrix( 3, 1, conmat )


l,u,p = a.LUdecomposition( )


for m in [l,u,p]: print( m )


x = a.LUsolve( b )


print( x )
25



コレスキー分解
• 対角対称形となる正方行列（対称行列）について、コレスキー分解（Cholesky decomposition）は、三角分解の1つで、A=LLT

となるような三角行列Lとその転置行列LTの積で正方行列Aを表わす分解の仕方である





• コレスキー分解の下三角行列の各要素は以下のように求めることができる（Cholesky–Banachiewicz および Cholesky–Crout 
アルゴリズム）


A =

a11 a12 ! a1n
a21 a22 ! a2n
" " # "
an1 an2 ! ann

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= LLT =

l11 0 ! 0

l21 l22 ! 0

" " # "
ln1 ln2 ! lnn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

l11 l21 ! ln1
0 l22 ! ln2
" " # "
0 0 ! lnn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

l jj = ajj − l jk
2

k=1

j−1

∑ (i = j)

lij =
aij − likl jk

k=1

j−1

∑
l jj

( j < i ≤ n)

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

26



コレスキー分解による求解
• コレスキー分解された行列Aにおける
連立1次方程式は、以下の式のように
記述できる





• Ux=yとおくと、次のように記述でき
る




• これらの式から以下の手順で解を求
める


1. Lと定数項の列ベクトルbから、yの
列ベクトルを求める（前進消去）


2. LTと列ベクトルyから、xの列ベク
トルを求める（後退代入）


• それぞれの列ベクトルの各要素は以
下のように求める





Ax = LLTx = b

Ly = b
LTx = y

⎧
⎨
⎪

⎩⎪
yi =

bi − lij y j
j=1

i−1

∑
lii

(i = 1,!,n)

xi = yi − l jix j
j=i+1

n

∑ (i = n,n−1,!1)

27



scipy, sympyのコレスキー分解と求解
• 正定値（positive definite）の対称行列が対
象となる。


• 正定値は、零ベクトルでない任意のベクトル
xとその転置ベクトルxTとその行列Aを乗算
したときに、いつでもその値が正になるもの
（xTAx > 0）


• 正定値の対称行列では、対角成分の要素の値
の方が、周辺の値よりも大きい傾向がある


• 正定値の対称行列かどうかチェックする方法
は、以下を参照 

https://www.gaussianwaves.com/2013/04/
tests-for-positive-definiteness-of-a-matrix/


• scipy


import scipy.linalg as linalg


L = linalg.cholesky( A, lower=True )


L, low = linalg.cho_factor( A )


x = scipy.linalg.cho_solve( (L, low), b )


• sympy


from sympy.matrices import Matrix


L = A.cholesky( )


x = A.cholesky_solve( b )

28

https://www.gaussianwaves.com/2013/04/tests-for-positive-definiteness-of-a-matrix/
https://www.gaussianwaves.com/2013/04/tests-for-positive-definiteness-of-a-matrix/


LDL分解
• 対称行列Aに対して、コレスキー分解のLLTではなくて、間にDという対角行列をいれて、 

A = LDLTという形に分解して解を求める


• 修正コレスキー分解（modified Cholesky decomposition）あるいは、LDL（LDLT）分解と呼ばれて
いる





• Aが大型で成分に0が多い疎行列の時、特定の要素を強制的に0とおき、近似的にA ≈ LDLT（あるいは
A = LDLT+N：Nは残差）が成り立つように分解する。


• 疎行列のときに使われるこの分解は、不完全コレスキー分解（incomplete Cholesky decompostion）
と呼ばれる

A =

a11 a12 ! a1n
a21 a22 ! a2n
" " # "
an1 an2 ! ann

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= LDLT =

l11 0 ! 0

l21 l22 ! 0

" " # "
ln1 ln2 ! lnn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

d1 0 ! 0

0 d2 " 0

" ! # "
0 0 ! dn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

l11 l21 ! ln1
0 l22 ! ln2
" " # "
0 0 ! lnn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

29



LDL分解の仕方
• LとDの各要素を行列Aから以下のようにして求める




• k = 2, 3, ..., nにおいて


d1 = a11, l11 = 1

dk = akk − lkj
2d j

j=1

i−1

∑ (i = k)

lkk = 1 (i = k)

lki =
aki − lkjlijd j

j=1

i−1

∑
di

(i = 1,2,!,k −1)

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

30



LDL分解による求解
• LDLTの対角行列Dの対角成分の各要素の
平方根を持つ行列を とする。


• Dは対角行列なので、 であり、以
下の式が成り立つ




• Ax = bを を用いて次のように変形す
る




• この両辺に を掛けると次の式が得ら
れる





• この式の は対角行列になる。こ
の行列をBとする





• このBを用いて、Ax = bは、LU分解やコ
レスキー分解と同様に以下のように記述
できる


D
1
2 = eye( dii )

D
1
2 = (D

1
2 )T

LDLT = LD
1
2D

1
2LT = LD

1
2( ) D 1

2L( )T
(LD

1
2 )T

Ax = A((LD
1
2 )T )−1(LD

1
2 )T x = b

(LD
1
2 )-1

(LD
1
2 )−1A((LD

1
2 )T )−1(LD

1
2 )T x = (LD

1
2 )−1b

(LD
1
2 )−1A((LD

1
2 )T )−1

B = (LD
1
2 )−1A((LD

1
2 )T )−1

(LD
1
2 )T x = y

By = (LD
1
2 )−1b

⎧
⎨
⎪

⎩⎪

31



Scipy, SympyのLDL分解とLDL求解
• Scipy


import numpy as np


from scipy import linalg


A = np.array( [ [25, 15, -5], [15, 18, 
0], [-5, 0, 11] ] )


L, D, P = linalg.ldl( A )


print( L.dot(D).dot(L.T) )  # L @ D @ 
L.T


from scipy.linalg.lapack import 
dsysv


lult, piv, x, _ = dsysv(A, b, lower=1)


• Sympy


from sympy.matrices import 
Matrix


A = Matrix(((25, 15, -5), (15, 18, 0), 
(-5, 0, 11)))


L, D = A.LDLdecomposition( )


print( L * D * L.T )


x = A.LDLsolve( B )

32https://stackoverflow.com/questions/47258075/ldlt-factorization-using-scipys-python-bindings-to-lapack



numpy, scipy, sympyによる逆行列の求値方法
• numpy


‣ numpy.linalg.inv( 行列 )


‣ numpy.matrixのオブジェクト.I


• scipy


‣ scipy.linalg.inv( 行列 )


• sympy


‣ 行列.inv( method=None )


‣ method=Noneのときは、ガウスの消去法によ
る、なお行列が疎行列（SparseMatrix）のとき
は、標準でQR分解（inverse_QR()関数と同じ)
が用いられる


‣ 以下のメソッド（文字列で名前を指定）が使え
る


- "GE"…Gaussian Elimination,   
inverse_GE()と同じ


- "LU"…LU Decomposition,   
inverse_LU()と同じ


- "ADJ"…ADJugate matrix and a determinant,  
inverse_ADJ()と同じ


- "CH"…Cholesky decomposition,  
 inverse_CH()と同じ


-  "LDL"…LDL decomposition,    
inverse_LDL()と同じ


33



反復法による連立1次方程式の求解
• 元数（変数）が多い連立1次方程式の場合、係数行列Aの要素には0が含まれる場合が多い


• 行列の要素に0が含まれる割合が多い行列は、疎行列（sparse matrix）と呼ばれる


• 係数行列Aが疎行列であり、元数が多い場合は、求解をするために、反復法（iteration 

method）が用いられる


• 以下に4つの反復法を用いた求解のアルゴリズムを紹介する


‣ ヤコビの反復法


‣ ガウス・ザイデルの反復法


‣ 共役勾配法


‣ ICCG法

34



ヤコビの反復法
• n元n立一次方程式を考える。





• この対角項の係数について な
らば、xiについて次の式が得られる





• ここで、 はxiの初期値である。この初期値
には、適切な値が代入されているとする


• この式に基づいて、xiを求めていく方法は、
ヤコビの反復法（Jacobi method）と呼ばれる


• 反復計算の終了を判定する条件式は、以下の
いずれかの式による。εは許容誤差





• 方程式がヤコビの反復法によって収束する条
件は以下のようになる。この条件を対角優位
（diagonal dominant）と呼び、この条件が満
たされていれば、反復法で解が求まる


a11x1 + a12x2 +!+ a1nxn = b1
a21x1 + a22x2 +!+ a2nxn = b2

!
an1x1 + an2x2 +!+ annxn = bn

⎧

⎨

⎪
⎪

⎩

⎪
⎪

aii ≠ 0 (i = 1,2,!n)

xi
(k+1) =

bi − aijx j
(k ) − aijx j

(k )

j=i+1

n

∑
j=1

i−1

∑
aii

(k = 0,1,2,3,!)

xi
(0)

xi
(0)

xi
(k+1) − xi

(k ) ≤ ε
i=1

n

∑ xi
(k+1) − xi

(k )

xi
(k+1) ≤ ε

i=1

n

∑

aij
aii

+
aij
aii

<1
j=i+1

n

∑
j=1

i−1

∑ (i = 1,2,!,n)

35



ガウス・ザイデルの反復法

• ヤコビの反復法に対して、右辺の を

最も新しい で置き換えて計
算する方法を、ガウス・ザイデルの反
復法（Gauss-Seidel method）と呼ぶ


• の計算式は、以下のようになる





• 収束判定は、ヤコビの反復法と同じも
の（以下の条件式のいずれか）が使え
る。





• なお、解が収束するかどうかについて
も、ヤコビの反復法と同じ対角優位の
条件式が使える


• ガウス・ザイデルの反復法の収束は、
ヤコビの反復法よりも速いことがわか
っている

x j
(k )

x j
(k+1) ( j < i)

xi
(k+1)

xi
(k+1) =

bi − aijx j
(k+1) − aijx j

(k )

j=i+1

n

∑
j=1

i−1

∑
aii

(k = 0,1,2,3,!)

xi
(k+1) − xi

(k ) ≤ ε
i=1

n

∑ xi
(k+1) − xi

(k )

xi
(k+1) ≤ ε

i=1

n

∑

36



Scipy, Sympyの疎行列求解関数
• Scipy


from scipy.sparse import 
csc_matrix


from scipy.sparse.linalg import 
spsolve


A = csc_matrix([[3, 2, 0], [1, -1, 0], 
[0, 5, 1]], dtype=float)


B = csc_matrix([[2, 0], [-1, 0], [2, 0]], 
dtype=float)


x = spsolve(A, B)


• Sympy


from sympy.matrices import 
SparseMatrix, Matrix


A = Matrix([1, 2, 3])


B = Matrix([2, 3, 4])


S = SparseMatrix(A.row_join(B))


x = 
S.solve_least_squares(Matrix([8, 14, 
18]))

37



共役勾配法
• Aがn次正方行列で、Ax=bのn元連立方程式を解くための関数F(x)をベクトルの内
積を用いて、以下のように定義する




• 要素で表わすと以下のようになる





• 解の変数について、任意の初期ベクトルx0から出発し、F(x)が減少するようにベ
クトルx1, x2, …を求め、F(x)を最小にするxを連立一次方程式の解とする方法を共
役勾配法（conjugate gradient method）と呼ぶ

F(x) = 1
2
(x ⋅ Ax)− (x ⋅b)

F(x) = 1
2

aijx jxi
j=1

n

∑
i=1

n

∑ − xi
i=1

n

∑ bi

38



共役勾配法の計算方法
• 適当な初期値ベクトルx0を設定し、r0
とp0を以下のように計算する




• k=0,1,2,…に対して、収束するまで以
下の式を繰返し計算する





‣ ならば終了（εは許容誤差）
そうでないときは以下を計算


r0 = b − Ax0
p0 = r0

ak =
(rk ⋅ rk )
( pk ⋅ Apk )

xk+1 = xk + ak pk
rk+1 = rk − ak Apk

rk+1 ≤ ε

βk =
(rk+1 ⋅ rk+1)
(rk ⋅ rk )

pk+1 = rk+1 + βk pk

39



Scipyの共役勾配法を使った求解関数
• from scipy.sparse import linalg


• x = linalg.cg(A, b, x0=None, tol=1e-05 )　あるいは


• x = linalg.cgs(A, b, x0=None, tol=1e-05 )


‣ cgs関数では、Aは正方行列である必要性がある


‣ x0は、xベクトルの初期値


‣ tolは許容誤差


• 使用例：


‣ from scipy.sparse import linalg


‣ x, _ = linalg.cg(A, b, x, tol=1e-14)

40



ICCG法
• 不完全コレスキー分解（incomplete Cholesky decomposition）で、前処理を行な
い、この結果に共役勾配法を適用する方法をICCG法（Incomplete Cholesky 

Conjugate Gradient method）と呼ぶ


• 係数行列Aに対して、A=LDLTを不完全コレスキー分解または修正コレスキー分解
で求めておき、その逆行列(LDLT)-1を使って共役勾配法で解を求めていく

41



 ICCG法の計算方法
• 係数行列Aに対して、A=LDLTを不完
全コレスキー分解または修正コレス
キー分解で求めているものとする


• 適当な初期値ベクトルx0を設定し、r0
とp0を以下のように計算する




• k=0,1,2,…に対して、収束するまで以
下の式を繰返し計算する





‣ ならば終了（εは許容誤差）
そうでないときは以下を計算


r0 = b − Ax0
p0 = (LDL

T )−1r0

ak =
(rk ⋅(LDL

T )−1rk )
( pk ⋅ Apk )

xk+1 = xk + ak pk
rk+1 = rk − ak Apk

rk+1 ≤ ε

βk =
(rk+1 ⋅(LDL

T )−1rk+1)
(rk ⋅(LDL

T )−1rk )

pk+1 = (LDL
T )−1rk+1 + βk pk

42



固有値と固有ベクトル
• 有限次元線形空間 V 上の線形変換 A に対して、次の方程式を満たす零でないベクトルxと
スカラーλが存在するとき、xをAの固有ベクトル、λをAの固有値と呼ぶ。




• 固有値は、行列式に関する次の方程式を解くことによって求められる。





• 但しI は単位行列である。この方程式のことを固有方程式（または特性方程式）という。


• 特性方程式で複数求まる固有値λj(j=1,2,...,n)に対して、各xiを求めると、λjに対応した固有
ベクトルxjが求められることになる 

Ax = λx

det λI − A( ) = 0

43



固有値の求め方
• べき乗法（power method）


‣ 最大固有値を求めることができる


• ヤコビ法（Jacobi eigenvalue algorithm）・ハウスホルダー（Householder）法


‣ 対称行列の固有値を求めることができる


• QR法


‣ 対称でない行列の固有値も求めることができる

44



scipy, sympyで固有値・固有ベクトル
• scipy.linalgパッケージ


‣ w, vl, vr = linalg.eig( A )  … Aの固
有値配列、左固有ベクトル、右固
有ベクトルを返す


‣ w = linalg.eigvals( A ) …Aの固有値
配列を返す


• sympy.matricesパッケージのMatrix
クラス


‣ edict = A.eigenvals( )…Aの固有値
を辞書で返す（キーは固有値、値
は多重度）


‣ elist = A.eigenvals( multiple=True ) 
…Aの固有値をリストで返す


‣ evlist = A.eigenvectors( ) … Aの(固
有値, 多重度, 固有ベクトル)のタプ
ルを要素に持つリストを返す

45



べき乗法
• べき乗法（power method）は、絶対値が
最大である固有値を1つ求める方法になっ
ている


• Ax(0)≠0であるようなx(0)を選んで、以下の
ように繰返しAと乗算を行なう





• x(k)の成分をx1(k), x2(k), …, xn(k)とすると、そ
れらの成分比はAの最大固有値に属する固
有ベクトルに収束する





• この固有ベクトルから、対応する絶対値最
大固有値を求めるには、レイレイ商
（Rayleigh quotient）と呼ばれるベクトル
の内積の商が用いられる





• あるいは、x(k)とx(k+1)の対応する各要素の
成分比を計算し、r1, r2, …, rnのうちの１つ
または、平均値を固有値とする方法もある


x(1) = Ax(0) ,x(1) = Ax(0) ,!,x(k+1) = Ax(k ) ,!

x1
(k ) : x2

(k ) :!: xn
(k )

λ = (x
(k ) ⋅ Ax(k ) )
(x(k ) ⋅ x(k ) )

= (x
(k ) ⋅ x(k+1) )
(x(k ) ⋅ x(k ) )

=
xi
(k )xi

(k+1)

i=1

n

∑

{xi
(k )}2

i=1

n

∑

r1 =
x1
(k+1)

x1
(k ) ,r2 =

x2
(k+1)

x2
(k ) ,!,rn =

xn
(k+1)

xn
(k )

46



ヤコビ法
• ヤコビ法（Jacobi eigenvalue algorithm）は、固有値を求める方法で、ヤコビの
反復法（Jacobi method）とは、別のものである。


• ヤコビ法は、実対称行列Aのn個の固有値と固有ベクトルを直交行列
（orthogonal matrix）Pを用いて、求める方法である。

47



ハウスホルダー法
• ハウスホルダー法（Householder method）は、実対称行列Aを三角対称行列
（tridiagonal matrix）に変換して、固有値と固有ベクトルを求める方法である。

48



QR分解
• A = QR


• Qは、直交行列（直交行列とは、転置行列と逆行列が等しくなる正方行列のこ
と）


• Rは、上三角行列


• scipy.linalgにおいて、Q, R = qr( A )


• sympy.matricesにおいて、Q, R, p = QRdecomposition( A )

49



QR分解の仕方
• QR分解を計算する方法として、以下の3つが良く知られている


‣ グラム・シュミットの正規直交化法を用いるもの


‣ ハウスホルダー変換を用いるもの


‣ ギブンス回転を用いるもの


• グラム・シュミットの正規直交化法を利用したQR分解

50



QR法
• QR法は、正方行列AをQR分解して、

QとRの乗算順序を交替して、新たな
Aを求めることを繰り返して、Aを上
三角行列または、ブロック三角行列に
収束させて、固有値を求める方法であ
る


• A1=Aから始める、k=1,2,…について、
毎回QR分解を行ない、次のAk+1をRQ
の行列の積で求めていく





• Akは、k→∞のときに、右上三角行列
に収束し、その対角要素には絶対値が
大きい順にAの固有値が並ぶ





•固有ベクトルを求めるためには、それ
ぞれの固有値から特性方程式に戻っ
て、Aとλから求めるAk = QkRk Ak+1 = RkQk

A∞ =

λ1
0 λ2
! " #
0 0 " λn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

51



参考・引用文献
• よくわかる数値計算　アルゴリズムと誤差解析の実際、戸川隼人他監修、佐藤次男、中
村理一郎著、日刊工業新聞社、2001年


• 数値計算の基礎と応用［新訂版］数値解析学への入門、杉浦洋、サイエンス社、2009年


• Numpy linear algorithm reference, https://numpy.org/doc/stable/reference/
routines.linalg.html


• Scipy linear algorithm reference, https://docs.scipy.org/doc/scipy/reference/linalg.html


• Scipy sparse linear algorithm, https://docs.scipy.org/doc/scipy/reference/
sparse.linalg.html


• Sympy Matrices reference, https://docs.sympy.org/latest/modules/matrices/matrices.html


• Sympy Sparse Matrices reference, https://docs.sympy.org/latest/modules/matrices/
sparse.html

52

https://docs.scipy.org/doc/scipy/reference/linalg.html
https://docs.sympy.org/latest/modules/matrices/matrices.html

