
第２回講義資料
箕原辰夫

スクリプト言語プログラミング
Pythonによる数値解析

空白とコメント
• Pythonでは、左側に空白が空いているのがアウトラインのレベルを示す

‣ TABキーを使う, Deleteで戻せる

• インデントがあっていないと動作しない

• # この後改行するまでがコメント

• """ """ 囲まれた範囲がコメント

2

Pythonの記号
記号 呼び方 意味

; セミコロン 文の区切りを示す

. ドット 所属を示す「～の～」

, カンマ 羅列を示す「～と～」

" ' クォテーション 文字列を示す

ナンバーマーク 行の終わりまでコメント

""" ３つのクォート 囲まれた範囲がコメント

* アスタリスク 「すべて」または「掛け算」または「字面展開」

: コロン 制御構文であることを示す

@ アットマーク アノテーション（実行時の指定）を示す

プログラムは式を記述していく
• 式の構成要素

‣ 変数

‣ 定数（リテラル）

‣ 演算子

• 定数は、値のこと

‣ 一定の値を取り続けるということで、定数(constant)と呼ばれる

‣ プログラミング言語では、定数が型を持つ

4

値の型
• Java/C/C++/C#では、値の型が厳格に参照される。

‣ 厳格な型言語（Strict type languages）
• Python/JavaScript/Rubyなどでは、結果的に値の型が決まっていく

‣ 型推論（Type Inference）と呼ばれる
• 新しいプログラミング言語では、コンパイラを使う言語でも、実行時に型推論をするようになってきました
‣ Rust/Dart/Swift/Julia/C#

• プログラム上で値を記述できる型（primitive type)には次のようなものがある

‣ 論理型

‣ 整数型

‣ 実数型

‣ 複素数型

‣ 文字列型

• プログラム上で記述された値（型を持つ）をリテラル（literal）と呼ぶ

5

論理型
• 条件が満足されたかどうかを示す真偽値。

• bool型（ブール代数から）と呼ばれる。

• 値としては、次の２つだけになっている。

‣ True…条件を満足した（真）

‣ False…条件を満足しない（偽）

6

特別な値
• None … オブジェクトを差していない特別な値

• クラスは、NoneTypeという型になっている

7

整数型と実数型
• 整数は、離散数（Discrete Number）と呼ばれ、実数は連続数（Linear

Number）と呼ばれている。

8

0.0-1.0-2.0 1.0 2.0

0-1-2 1 2

Integer(離散数)

Real(連続数)

整数型
• 整数型の型名は、int

• Pythonでは、整数の桁数の制限はない（C/C++/Java/C#などの他の言語では、42

億ぐらいまでとか、922京ぐらいまでの制限がある）

• 整数の例：

‣ 7 2147483647 3

‣ 79228162514264337593543950336

‣ 100_000_000_000 (Python 3.6から)

9

8進数、2進数の整数と16進数の整数
• 8進数の整数

‣ 0oを先頭につける(0から7までしか使えない）

‣ 0o262730

• 16進数の整数

‣ 0xを先頭につける

‣ 0x45a

• ２進数の整数
‣ 0bを先頭につける

‣ 0b01010101

10

実数型
• 浮動小数点数で表現される

• Pythonでの型名としては、float

• 小数点をつけると自動的に実数型として認識される

‣ 2.3 4. → 4.0 .05 → 0.05
• 指数表記が可能

‣ 2.45×1016 → 2.45e16 あるいは 2.45e+16

• 実数の例：

‣ 3.14 10. .001 1e100 3.14e-10 0e0 3.14_15_93 (Python 3.6から)

• 表わせる範囲

‣ ±2.23×10−308 ～ ±1.80×10308

11

複素数型
• 虚数（数学ではiを使うが、工学系やPythonではjを用いる）

• 虚数値の例：

‣ 1j 3.14j 10.j 10j .001j 1e100j

‣ 3.14e-10j 3.14_15_93j

• 実数部と虚数部を加減算することで
複素数を表現することができる

• 型名は、complex

• 複素数の値の例：

‣ 12+4j 3.5-5.2j 2+5j

12

−1 = ii × i = −1
虚軸

実軸

複素数平面（Complex plane）
• 複素数平面は、ガウス平面（Gaussian plane）とも呼ばれる

• 共役複素数は、conjugateを使って求めることができる

‣ 例：(1+1j).conjugate()

• 実数部を取り出すのは、.real

虚数部を取り出すのは、.imag
を用いる

‣ 例：(1+0.5j).real (3+4j).imag

13

複素数とオブジェクト
• 複素数はオブジェクトになっている（実は整数や実数もオブジェクト）

• オブジェクトは、そのオブジェクト固有の属性（attribute, フィールドfieldとも呼
ぶ）を持っており、変数としてアクセスできる

• オブジェクトは、そのオブジェクト固有の関数（メソッドmethodと呼ばれる）
を持っており、そのオブジェクトを介して呼び出すことができる

• 属性とメソッドを合わせて、プロパティ（property）と呼ぶことがある

14

Pythonでのオブジェクトのプロパティの標記法
• 属性の場合

‣ オブジェクト.属性名

‣ 例：(3+4j).real…3.0が返される

‣ 例：(3+4j).imag…4.0が返される

• メソッドの場合

‣ オブジェクト.メソッド名(パラメータ)

‣ パラメータが必要ないときは括弧内には何も書かない

‣ 例：(3+4j).conjugate()…3-4jが返される

15

複素数のためのライブラリ
• abs(複素数)…複素数のノルム（normあるいは絶対値、大きさrのこと）を求める

• import cmathを入力しておく

• cmath.phase(複素数)…偏角φをラジアン角度で返す

• cmath.polar(複素数)…ノルムと偏角の対を返す

• cmath.rect(ノルム, 偏角)…ノルムと偏角から構成される複素数を返す

• ノルムと偏角で表される複素数の形式を「極形式」(polar form)と呼ぶ

• 極形式については、オイラーの公式が有名

16

z = r cosϕ + jsinϕ() = re jϕ

文字列型
• 文字はすべてUnicodeで符号化されている。

• ファイルなどを読み込むときに、別の符号（JISやShift JIS）を用いるときは、符
号（エンコーディング：encoding）の指定をしなければならない。

• 文字列を扱う型はstrクラスになっている

• Pythonでは、どちらかの引用符を用いる

‣ 値を記述するときは一重引用符で囲む 'a'

‣ 値を記述するときは二重引用符で囲む "a"

17

Unicodeによる文字列
• strクラスという形で定義されている

• \nは改行、\tは水平タブ

• \" はダブルクォーテーション、\'はシングル

• \\ はバックスラッシュ自身を表わす

• \uと16進数4桁で、Unicodeの文字を指定できる。

‣ "\u4e00" → "一"　

• \Uと16進数8桁で、拡張された文字領域の文字を指定できる。

‣ "\U00013000" → "𓀀"

• パレットでUnicodeのコード表を参照

‣ Mac OS スクリプトメニューの「絵文字と記号を表示」→左上のリストをカスタマイズで、「Unicode」を追加

‣ Windows IMEパッドの文字カテゴリでUnicodeを選ぶ（基本多言語面は、4桁で指定する部分、追加多言語面は、8桁
で指定する部分）

18

Unicodeと組込み関数
• 1文字に対して

‣ ord(1文字の文字列)…文字に対応するUnicodeのコードを整数として返してくれる

- 例：ord("𓀘")→77848　　　　ord("A")→65 ord("漢")→28450

‣ chr(整数)…Unicodeの整数に対応する1文字の文字列を返してくれる

- 例：chr(105)→'i' chr(0x3fe9)→'㿩' chr(0x103b5)→'𐎵'

• 文字列に対して

‣ ascii(文字列)…ascii文字はそのまま、それ以外の文字については、文字列中の各文字に対して対応する
Unicodeの16進数を「文字列リテラル」として返してくれる。もちろん、 1文字の文字列でも使用可能

- 例：ascii("ABCあい𓀘")→'ABC\\u3042\\u3044\\U00013018'

- 例：ascii("鮪") → '\\u9baa' ascii("𓀉") → '\\U00013009'

19

変数の名前と代入
• 変数の名前

‣ 変数の名前に使えるのは、半角の英数字、およびアンダーバー（ _ ）

‣ 名前の先頭の文字は英字でなければならない

‣ 変数名は、半角の小文字の英字でつけるように心掛けたい

‣ _で始まる変数は、内部用の変数。__（アンダーバー2つ）で始まる変数は、システム変数

例：

　　　　x y z one two na99 take_a_cup
• 代入

‣ 変数名 = 式

例：　　x = 10

20

プログラム上に現れる英字
• a … 変数名

• "a" あるいは 'a' … a一文字から成る文字列

• abc1234 … 変数名

• "abc1234" あるいは 'abc1234' …　文字列

• 以下は予約語なので、変数名としては使えない

• and as assert async await break class continue

• def del elif else except finally for from

• global if is import in lambda nonlocal not

• or pass raise return try yield while with

21

変数の型宣言
• 変数の型を予め宣言しておくことができる（Python 3.7より）

• 変数の型宣言は、代入より前か、初期値を代入するときに行なう

• 書式

‣ 変数名 : 型名

‣ 変数名：型名 = 初期値の式

• 例：

‣ x : str

‣ y : float

‣ z : complex = 4j

‣ i : int = 7

22

変数の参照
• 参照

‣ 変数が保持する値に置き換えられる。

‣ 変数が保持するオブジェクトが参照される。

‣ 例：

x = 8

print(x * 12) # 8 * 12に置き換えられる

• 自己参照代入

‣ 元の値を利用して、新しい値が代入される。

x = x + 1
x = – x
x = x – 20

23

• 右辺と左辺は同一ではない

• 等しいという意味ではなく、右辺の式（expression）を評価（evaluate）して左
辺にAssignするもの。

左辺 = 右辺

‣ この意味は、「左辺の変数　←　右辺の評価値」

• なお、左辺の値が評価値として残る（右結合性）

x = y = z = 0 → (x := (y := (z := 0)))

代入としての記号 =

24

式に何が書けるか
• 式の定義

‣ 定数

‣ 変数名

‣ 式 + 式　 ←加算 add

‣ 式 – 式　 ←減算 subtract

‣ 式 * 式　 ←乗算 multiply

‣ 式 / 式　 ←実数除算 true divide

‣ 式 // 式　 ←整数除算 floor divide

‣ 式 % 式　　←剰余 modulo

‣ 式 ** 式　　←べき乗 power

‣ 変数名 := 式　←代入式 assign

expression

‣ (式)

25

式の構文解析
• ４５＊（３４＋２３）／（ｙ−５）

• 　式＊（式　+　式）／（式−式）

• 　式＊（式）　　　／　（式）

• 　式＊式　　　　　／　　式

• 　式　　　　　　　／　　式

• 　式

• ×　 45x + 65y

• 構文解析器（parser：パーサー）
は、文法規則（syntax rule）に従っ
て式を解釈し、置き換えていく

26

代入演算子 :=

• Python 3.8からの導入で、式の中に演算子として代入演算子を指定することができる

• = は、代入文を形成するので、左辺に代入する変数、右辺に式を記述するが、:=は式の中
に代入式を記述することができる

• 例：

print(n := 10, f"binary value of {n} is {n:b}") → binary value of 10 is 1010

• :=は、優先度が低いので、場合によっては、()をつけて優先度を高くする必要がある

• また、関数呼出しの実引数の部分以外では「(変数名 := 式)」という形で、丸括弧をつけて
あげないと文法エラーになる

• 例：

t = (n := 12, m := 13)　　→ t = (12, 13); n =12; m=13

27

式と評価
• 評価（Evaluation）とは

‣ 単一の値になるまで計算すること

• 式の書式に合っているか

‣ 書式に合っていないと文法エラー

• 式の評価の優先順位

‣ 優先順位がある

‣ 単項の±は一番優先される

‣ べき乗の演算子（**）の優先度は
高い

‣ 乗除算の演算子（* / // %)の方が
優先される

‣ 加減算の演算子（+ -)が優先度低い

‣ 代入演算子:= は優先度が一番低い

‣ （）で囲むと優先度を高くする

28

結合性
• 同じ優先順位の演算子は、左から評価されていく（加減乗除などの場合）

‣ 左結合性（Left associative）と呼ぶ

56 * 34 / 28 * 60 / 30 % 89

→((((56 * 34) / 28) * 60) / 30) % 89

83 + 45 - 23 + 38

→((83 + 45) - 23) + 3

29

整数演算
• 整数除算は、小数点以下が切り捨てられる

‣ 5 // 2 → 2

‣ 1 // 8 → 0 分母の方が大きいと0になる

• どこに整数除算があるか重要

‣ 5 // 2 * 2 → 4

‣ 5 * 2 // 2 → 5

• 剰余算は、余りを計算する（実数でも可）

‣ 365 % 20 → 5

‣ x % n → 0 ～ n-1の数しか出てこない

計算結果が0になるときは、割り切れるということ
30

整数剰余・整数除算
• x // n * n

‣ xと等しいか、xを超えない最大の数で、nで割り切れる数が求まる

‣ 例： 10 // 3 * 3 → 9

• n // m

‣ n < mの場合は、0になる

‣ 例： 3 // 4 → 0

• n % m

‣ n < mの場合は、nになる

‣ 例：3%4 → 3

31

整数除算の計算方法
• x % n →　 x – (x // n * n)

• x // n → (x – x % n) // n

• x // n * n ≠ xのときがある

‣ 9 // 3 * 3 → 9
‣ 10 // 3 * 3 → 9

‣ 11 // 3 * 3 → 9

‣ 12 // 3 * 3 → 12

‣ 13 // 3 * 3 → 12

‣ 14 // 3 * 3 → 12

‣ 15 // 3 * 3 → 15

32

基数と整数剰余・整数除算
• 各桁に分解できる

‣ 3456 % 10 = 6 最下位の一桁

‣ 3456 // 10 % 10 = 5

‣ 3456 // 10 // 10 % 10 = 4

‣ 3456 // 10 // 10 // 10 % 10 = 3

• n進数でも同じ

‣ 234 % 7 = 3

‣ 234 // 7 % 7 = 5

‣ 234 // 7 // 7 % 7 = 4

33

負の数を伴う整数除算・剰余
• どちらかに（あるいは両方）負の数がはいる場合は、もと
もと整数除算は、床関数（floor関数：⌊x⌋…xと等しい
か、xよりも小さいなかでの最大の整数）で計算されるの
で、マイナス方向に引っ張られた値になる。

• 例：

‣ 10 // -3 　⇒ 　10/-3 = -3.333..., floor(-3.3...) = -4

‣ -10 // -3 　⇒ 　-10/-3 = 3.333..., floor(3.3...) = 3

‣ -10 // 4 　⇒ 　-10/4 = -2.5, floor(-2.5) = -3

• 負の値が入った場合の剰余の計算方法は、除数で整数除算
を行なった結果と除数を乗算して、被除数からの差分が計
算される

‣ m % -n 　⇒ 　m - (m // -n) * -n

‣ -m % n 　⇒ 　-m - (-m // n) * n

‣ -m % -n ⇒ 　-m - (-m // -n) * -n

• 例：

‣ 12 % -7 　⇒ 　12 // -7 = -2, 12 - (- 2 * -7) = 12 - 14 = -2

‣ -4 % 12 　⇒ 　-4 // 12 = -1, -4 - (-1 * 12) = -4 + 12 = 8

‣ -8 % -5 　⇒ 　 -8 // -5 = 1, -8 - (1 * -5) = -8 + 5 = -3

• 参考：

https://stackoverflow.com/questions/3883004/the-modulo-
operation-on-negative-numbers-in-python

34

https://stackoverflow.com/questions/3883004/the-modulo-operation-on-negative-numbers-in-python
https://stackoverflow.com/questions/3883004/the-modulo-operation-on-negative-numbers-in-python

整数におけるビット演算子とシフト演算子
• ~ ビットの反転（単項演算子）

‣ 例： ~x

• & ビットのAND（二項演算子）

‣ 例： x & 7

• | ビットのOR（二項演算子）

‣ 例：　x | 5

• ^ ビットの排他的論理和（二項演算子）

‣ 例： x ^ 0b1101

• シフト算は２のべき乗とのかけ算・割り算になる

• >> 右シフト　２のべき乗で割った

‣ 例： 12 >> 3 ≡ 12 // (2*2*2)

• << 左シフト　２のべき乗と掛けた

‣ 例： 3 << 4 ≡ 3 * (2 * 2 * 2 * 2)

35

ビット演算の例（8bit演算で）
• 0xa3と ~0xa3

‣ 0b10100011 各ビットを反転する(Pythonでは-(n+1))

‣ 0b01011100

• 0xa3 & 0x7a

‣ 0b10100011 0xa3

‣ 0b01111010 0x7a

‣ 0b00100010 0x22 両方とも1のビットだけ1

• 0xa3 | 0x7a

‣ 0b10100011 0xa3

‣ 0b01111010 0x7a

‣ 0b11111011 0xfb いずれかのビットが1なら1

• 0xa3 ^ 0x7a

‣ 0b10100011 0xa3

‣ 0b01111010 0x7a

‣ 0b11011001 0xd9 どちらかのビットが1なら1

36

2進数への変換と表示
• 入力された２つの数をそれぞれ２進数で表示する

• 入力された文字列の２進数を整数に変換するには、int(文字列, base=2)を用いる

• 整数を２進数で表示するには、bin()関数を用いる

• format関数を使って数値を文字列に変換する

‣ format(数値, 書式文字列)

‣ "b"…２進数　　　"d"…１０進数　　"o"…８進数　　"x"…16進数

• 文字列のzfill関数

‣ 文字列.zfill(0で埋める桁数)

‣ 使用例の書式：format(式, "b").zfill(桁数)

- 式の値を、桁数分の0で埋めてから、２進数を表示する

• 表示する数の下位の有効桁数を指定したいときは、「値 & 0b1111」などを使う

‣ 例：format(~(0b101) & 0xff, "b").zfill(8)

- 下位８桁だけを表示する

37

整数の補数
• 足してその数になる数の組み合わせ

• １０の補数

‣ 足して１０になる数の組み合わせ

‣ 例： 1と9, 2と8, 3と7, 4と6, 5と5　　　6に対する10の補数は？　　… 4

• 9の補数　0と9, 1と8, 2と7, 3と6, 4と5　　　8に対する9の補数は？　　… 1

• 補数は引き算の替わりに用いられる

‣ 基数の補数（2の補数、10の補数）と基数-1の補数（１の補数、9の補数）を利用

‣ 基数の補数 = 基数-1の補数　+ 1

‣ 例： 10000 – 5678 = ?

‣ 9999
– 5678 + 1 = 4321 + 1 = 4322

‣ 15678 – 9876 = 5678 + 10000 – 9876 = 5678 + 9999 – 9876 + 1 = 5678 + 123 + 1 = 5802

38

指数演算則
• 数学上の表現 • Python上の表現

　　　a ** 0

 a ** 1

 a ** -N

 a ** (M+N)

 a ** (M-N)

 a ** (1/N)

 a ** (M/N)

 a ** (M * N)
39

a0 = 1
a1 = a

a−N = 1
aN

aM+N = aM × aN

aM−N = aM ÷ aN

a
1
N = aN

a
M
N = aMN

aMN = (aM)N

複素数の四則演算
• (x1 + y1j) + (x2 + y2j) ⇒ (x1 + x2) + (y1 + y2)j

• (x1 + y1j) – (x2 + y2j) ⇒ (x1 – x2) + (y1 – y2)j

• (x1 + y1j) * (x2 + y2j)
 ⇒ (x1 * x2 – y1 * y2) + (x2 * y1 + x1 * y2)j

• zn * zm = zn+m

• (zn)m = znm

• (z * w)n = zn * wn

40

x1 + y1 j
x 2+y2 j

⇒ x1x 2+y1y2
x1
2 + x2

2 + x 2 y1 − x1y2
x1
2 + x2

2 j

複素数の加算・減算の意味
• 複素数の加算は、ガウス平面上では、２つのベクトルの加算として表される

• 複素数の減算は、ガウス平面上では、２つのベクトルの減算として表される

41

Im

Re

Z1

Z2
Z1+Z2

Z1-Z2

Z1

Z2

Im

Re

複素数の乗算・除算の意味
• 実数と複素数を乗算するのは、ノルムの拡縮

• 虚数jと複素数を掛けるのは、原点周りの90度の回転変換

• 一般に、複素数と複素数の乗算は、ノルムの積と偏角の和の組み合わせになる

• 複素数と複素数の除算は、ノルムの商と偏角の差の組み合わせになる

42

z = reiα

w = seiβ
zw = rsei(α+β)

zw = z w

arg zw = arg z + argw

z
w
= r
s
ei(α−β)

z
w

=
z
w

arg z
w
= arg z − argw

複素数の乗除算については
• デジタル・ビーイング・キッズ：画像処理の基礎講座

‣ http://www.dbkids.co.jp/popimaging/seminar/complex/complexoperation.htm

• フーリエ級数まで解説されている

43

複素数のべき乗（実数）の意味
• 複素数の表現について、オイラーの公式を思い出そう

• nが整数で、θが実数のときに、ド・モアブルの定理(De Moivre’s Law)が成り立つ

• 極形式で偏角の角度のn倍に回転する（反時計周りに）ということを示す

• 一般の複素数の場合には、ノルムのrが付くので、rnの項が上記の値に乗算されるので、

nが大きくなるにつれ、 のときは原点から離れる螺旋状の形、 のときは原点

に近づく螺旋状の形、 のときは、円になる（ただしθ≠2mπのとき）

e jθ = cosθ + jsinθ

e jθ()n = cosθ + jsinθ()n = cosnθ + jsinnθ

r > 1 r < 1
r = 1

44

複素数のべき乗をプロットしてみた例
• べき乗の場合、乗数を増やすと非常に大きくなるので、長さ（ノルム）を1.02にして、べき乗を1から0.2ずつ増やし
てみた

• プログラム例：

from matplotlib import pyplot

value = (1+1j)*(1/2**0.5)*1.02

rlist, imlist = [], []

for n in range(400):

 p = 1 + 0.2 * n

 rlist.append((value**p).real)

 imlist.append((value**p).imag)

 print(value**p)

pyplot.plot(rlist, imlist)

pyplot.show()

45

