
第７回講義資料
箕原辰夫

スクリプト言語プログラミング
Pythonによる数値解析

オブジェクトのリストの要素
• オブジェクトのリストの確保

‣ それだけで、オブジェクトが生成される訳でない

• オブジェクトのリストの要素

‣ 繰返しなどを使って、オブジェクトを生成する必要がある

‣ 例：

 complist : [complex] = [None] * 10

 for i in range(len(complist)):

 complist[i] = complex(i + 3j)
 # 要素のオブジェクトを作る

2

リスト内の要素オブジェクトのフィールド・メソッド
• インデックスを使ったアクセスの方法

‣ 属性あるいはフィールド（変数）をアクセスするとき

- オブジェクトリスト[インデックス].フィールド名

- complist[5].real

‣ オブジェクトのメソッド（関数）を呼び出すとき

- オブジェクトリスト[インデックス].メソッド名(実パラメータ)

- complist[i+1].conjugate()

3

文字列用のメソッド
• 比較

• 検索

• 置換

• その他

• リストとの変換

• 正規文字列を使った検索

4

文字列の比較、照合など
• 文字列は、==で等しいかどうか比べる

• len(文字列)…文字列の長さ

• 検索文字列 in 検索対象文字列 …入っているかどうか

• startswith(比べる文字列)…その文字列で始まるか

• endswith(比べる文字列)…その文字列で終るか

• 文字列 不等号演算子 比べる文字列 …辞書順に比べる

‣ < 辞書順（Unicode順）で先になっていればTrue

‣ > 辞書順（Unicode順）で後になっていればTrue

‣ >=, <=, !=なども用いることができる

5

文字列の検索
• find(検索文字列)…文字列の最初から検索、

返される位置は0から、見つからなければ-1

• find(検索文字列, 開始位置)…開始位置から検索

• find(検索文字列, 開始位置, 終了位置)…終了位置の手前まで検索

• index(位置 [, 開始位置 [, 終了位置]]) …findと同じだが、見つからなければValueError
例外扱いになる

• rfind(位置 [, 開始位置 [,終了位置]])…findと同じだが、文字列の最後から検索

• rindex(位置 [, 開始位置 [, 終了位置]])…indexと同じだが、文字列の最後から検索

• count(検索文字列 [, 開始位置 [,終了位置]])…検索文字列が出現する回数を返す

6

文字列の置換
• 文字列の足し算とスライスを使う

‣ s = "This is a sample."
‣ result = s[0 : 8] + "the" + s[9 :]

• 文字列は、変更不可能（immutable）なので、新しい文字列を生成するしかない。

• replace(元の文字列, 置換文字列)…該当する文字列を置換する
なお、３番目のパラメータで置換の最大回数を指定できる

• 置換された新しい文字列が返される

s = "This is a sample message for you."
result = s.replace("a", "the") # 'This is the sthemple messthege for you.'
result2 = s.replace("e", "é", 2) # 2回までに制限 'This is a samplé méssage for you.'

7

その他のstringの関数
• strip(), lstrip(), rstrip()…不要な空白を取り除く

• ljust(文字数), rjust(文字数)…文字数分だけの文字列を確保、左右に寄せる、埋める
文字は空白が標準だが、２番目のパラメータを与えることによって指定できる

• casefold()…大文字小文字の区別をしないで等価性を判定する文字列を返す

• upper(), lower()…大文字にする、小文字にする

• capitalize(), title()…最初の１文字を大文字にして、後の文字を小文字にする、title
は、単語ごとにそれを行なう

• partition(区切り文字列)…文字列を区切り文字列の最初の出現位置で区切り、(区切り
の前の部分, 区切り文字列, 区切りの後ろの部分)の３要素から構成されるタプルを返す

• zfill(文字数)…足りなければ、文字数を充たすだけ0を入れる

8

文字列リストの場合
• 文字列のリスト名[インデックス].メソッド名(実パラメータ)

• 文字列のリスト名[インデックス]スライス

• festival[2].find("お好み") ⇒ 0

• festival[2][2: 5] ⇒ "み焼き"

• リストのスライスと文字列のスライスの組合せは機能しない

• × festival[2: 4][2: 5] # スライスが2回施されたリストとされ、空のリストが返さ
れる

9

festival[0]

festival[1]
festival[2]

festival[3]
festival[4]

たこ焼き

焼きそば

お好み焼き

金魚すくい

水飴

文字列とリストの変換
• list(文字列)…１文字ずつ分解したリストができる

• str(リスト)…print関数で表示されるような文字列ができる

• 文字列.split(sep=区切り文字)…文字列を区切り文字で区切って、リストにする
区切り文字を指定しないと、タブ（複数も可能）、空白（複数も可能）、改行
（複数も可能）で区切ってくれる

• 文字列.splitlines()…文字列を改行文字で区切って、リストにする

• 区切り文字.join(リスト)…リストの各要素を区切り文字で繋げて文字列にする、
ただし、リストは要素が文字列のリストでなければならない

10

文字列の分割
• strクラス用のsplitメソッド

• １つの文字列を、区切りとなる文字列で分割し、
文字列のリストに直すことができる

• 書式：文字列.split(区切りとなる文字列)

‣ 区切りとなる文字列を指定しないと、空白（の
連続）、改行コード、タブなどで指定してくれ
る

‣ 例：

 ' A B 1 2 3 '.split() ⇒ ['A', 'B', '1', '2', '3']

tokens = "A sample message".split(" ")

tokens = ["A", "sample", "message"]

for token in tokens:

print(token)

• 書式：文字列.splitlines(keepends=False)

‣ 改行コード （\n, \r, \r\n=Windowsの改行,

\u2028=行区切り, \u2029=段区切り等）で文字
列を分割する

‣ keepends=Trueにすると、改行コードを残した
形で文字列を分割する

‣ 例：

'abc\n\nde fg\rkl\r\n'.splitlines()
⇒ ['abc', '', 'de fg', 'kl']

'abc\n\nde fg\rkl\r\n'.splitlines(True)
 ⇒ ['abc\n', '\n', 'de fg\r', 'kl\r\n']

11

文字列の統合
• 文字列のリストから、間にいれる文字列を指定して、１つの文字列に統合するこ
とができる

• "間の文字列".join(文字列のリスト)

‣ 例：

 colorlist = ["red", "blue", "green", "white"]

 total = " and ".join(colorlist)

 # total = "red and blue and green and white"

 print(total)

12

正規文字列
• UNIXの伝統の正規文字列

• . 　…　任意の一文字

• ? … 任意の0文字か１文字

• * … 0回以上の繰返し

• + … 1回以上の繰返し

• \a … その文字自体を表わす \. \? \\ *

• [abc]　…　文字のグループ化 例：[a-zA-Z0-9] 　[a-z0-9]　 [b-x]

• [^abc] … ^はそれは含めない

• ^ …行の先頭

• $ …行の最後

13

正規文字列を使った検索
• 正規文字列を扱うモジュール re

‣ import re # 利用する前に

• 正規文字列で検索

‣ マッチオブジェクト = re.search(正規文字列, 検索対象)

‣ 例：matset = re.search("[0,4-9]+th", "the 45th event")

• マッチオブジェクトを用いて検索結果

‣ 見つからなければNoneになっている

‣ start(), end()で、見つかった先頭の位置、終了の位置を求められる

• re.findall(正規文字列, 検索対象) で検索された文字列のリストを得ることができる

‣ 例: numlist = re.findall("[0-9]+", "the 123 students get 623 texts.")

14

正規文字列を使った文字列の分割・交換
• re.split(正規文字列, 分割する対象の文字列)

‣ 分割された文字列のリストが返される

‣ 例：re.split("[ab]", "ambassador") # ['', 'm', '', 'ss', 'dor']

• re.sub(検索文字列, 置換文字列, 対象となる文字列)

‣ 置換された文字列が新たに生成されて返される

なお、検索文字列と置換文字列をrで始めると、()でグループ化でき、参照が使える（参照番号は1
から始まる）

‣ 例：re.sub("[0-9]", "*", "abcd1234") # 'abcd****'

‣ 例：re.sub(r"([0-9]+)", r":\1-2025", "Johnson1987") # 'Johnson:1987-2025'

15

置換のためのグループ化用の正規文字列
• rで始まる文字列の中で使える

• (...)
‣ 丸括弧で囲まれた正規表現に照合するとともに、グループの開始と終了を表わす。グループの
中身は、照合が実行された後で参照したり、その文字列中で以降 \number 特殊シーケンスで
照合させることができる。

‣ 文字としての '(' や ')' に照合させるには、\(や \) を使うか、文字クラス中に囲む⇒[(]、 [)] 。

• \number

‣ 同じ番号のグループの中身を参照する。グループは順次 1 から始まる番号をつけられている。
99番までグループ化することが可能。

• 例：

‣ re.sub(r"([0-9]+) ([A-Z][a-z]+)", r"\2:\1", "2027 America") # 'America:2027'

16

Pythonの正規文字列の拡張(1)
• rで始まる文字列の中で使える

• {m}

‣ 直前の正規表現をちょうど m 回繰り返したものに照合させるよう指定する。それより少ない照合では正規表現全体が照合しない。

‣ 例： a{6} は 6 個ちょうどの 'a' 文字に照合するが、 5 個では照合しない。

• {m,n}

‣ 直前の正規表現を m 回から n 回、できるだけ多く繰り返したものに照合させる結果の正規表現にする。m を省略すると下限は 0 に
指定され、n を省略すると上限は無限に指定される。カンマは省略できない。

‣ 例：a{3,5} は、3 個から 5 個の 'a' 文字に照合します。

‣ 例： a{4,}b は 'aaaab' や、1,000 個の 'a' 文字に 'b' が続いたものに照合するが、'aaab' には照合しない。

• {m,n}?

‣ 結果の正規表現は、前にある正規表現を、m 回から n 回まで繰り返したものに照合し、できるだけ少ない繰り返したものに照合す
る。

‣ 例： 6 文字文字列 'aaaaaa' では、 a{3,5} は、5 個の 'a' 文字に照合するが、 a{3,5}? は 3 個の文字に照合するだけになる。

17

Pythonの正規文字列の拡張(2)
• \A

‣ 文字列の先頭でのみ照合する。

• \b
‣ 空文字列に照合するが、単語の先頭か末尾での
みになる。単語は単語文字の並びとして定義さ
れる。

‣ 形式的には、 \b は \w と \W 文字 (またはその
逆) との、あるいは \w と文字列の先頭・末尾
との境界として定義される。

‣ 例： r'\bat\b' は 'at' 、 'at.'、 '(at)' や 'as at ay'

には照合するが、 'attempt' や 'atlas' には照合し
ない。

• \B
‣ 空文字列に照合するが、それが単語の先頭か末
尾 でないときのみになる。

‣ 例： r'at\B' は 'athens'、 'atom'、'attorney' に照
合するが、 'at'、 'at.' や 'at!' には照合しない。

• \d

‣ 任意の Unicodeの10進数字に照合する。これは

[0-9] とその他多数の数字（全角も含む）を含
む。

‣ ASCIIでは[0-9]に等しい。

• \D

‣ 任意の Unicodeの10進数字以外に照合する。\d
の反対。

‣ ASCIIでは[^0-9]に等しい。

• \s

‣ Unicodeでは空白に対応する文字（ str.isspace()

がTrueのもの）に照合する。

‣ ASCIIでは[\t\n\r\f\v]に等しい。

• \S

‣ 空白以外の文字に照合する。\sの反対。.

‣ ASCIIでは[^ \t\n\r\f\v] に等しい。

• \w

‣ Unicodeでは英数字に対応する文字
（str.isalnum()でTrueになるもの）とアンダー
バー（_）に照合する。

‣ ASCIIでは[a-zA-Z0-9_] に等しい。

• \W

‣ Unicodeでは英数字と_以外の文字
（ str.isalnum()がFalseになるもの）に照合す
る。\wの反対。

‣ ASCIIでは [^a-zA-Z0-9_] に等しい。

• \zまたは\Z

‣ 文字列の末尾でのみ照合する。

‣ \zは、Python 3.14以降から使える。

18

Set

• 集合型は、{ }で囲むか、set関数を使ってリストなどから生成する、for文を使っても生
成することができる

‣ 例：fruits = { "りんご", "みかん", "なし", "いちご" }

‣ 例：xset = { x**2 for x in range(1, 11) if x % 2 == 1 }

‣ 例：drinks = set(["紅茶", "コーヒー" , "ジュース"])

• 集合なので、重複項目は、除去される

• in / not in 演算子を使って、集合に入っているかどうかを判定

‣ 例："なし" in fruits

• 組込み関数lenで、集合内の要素の個数を調べることができる
19

Setと要素
• 集合.add(要素) で、要素を追加する

• 集合.remove(要素)で、要素を削除する、ただし要素がないとエラー

• 集合.discard(要素)で、含まれていればその要素を削除する

• 集合.pop()で、任意の要素を返し、その要素を削除する、ただし１つも要素がな
いとエラー

• 集合.clear()で、集合の要素を全部削除する

20

Setでの演算
• 集合同士の演算→結果の集合が新たに生成されて返される

‣ 和集合 union A | B

‣ 差集合 difference A - B

‣ 交差集合 intersection A & B

‣ 排他的論理和集合 symmetric_difference A ^ B = (A | B) - (A & B)

• 部分集合の判定→論理値が返される

‣ 部分集合(subset）か A <= B

‣ 真部分集合か A < B

‣ 上位集合（superset）か A >= B

‣ 真上位集合か A > B

21

辞書（Dictionary）
• 辞書では、キーでエントリの値を引いてくることができる、ただしキーは一意で
ある必要がある

• キー値：対応する値のペア（エントリ: entryと呼ばれる）を、{ }の中に入れるこ
とで、辞書を作ることができる。for文を利用して作成することも可能

• 例：flowers = { "rose" : "薔薇", "lily": "百合", "hydrangea": "紫陽花" }

• 例： numbers = { n+1: name for n, name in enumerate(["one", "two", "three"]) }

• dict関数を使っても、タプルを要素としてもつリストなどから辞書を作成するこ
とができる

• 例：numbers = dict(zip(["one", "two", "three"], range(1, 4)))

22

辞書とエントリ
• 辞書[key]…keyの値を持つvalueを返す

• 辞書[key] = value…keyとvalueの組み合わせを登録

• del 辞書[key]…指定されたキーのエントリを削除する

• 辞書.clear()…全キー（エントリ）をクリアする

• key in 辞書 / key not in 辞書…keyが辞書にあるか／ないかどうか論理値で返す

23

辞書の一覧
• len()…エントリの個数を返す

• keys()…辞書にあるすべてのキーを返す

• values()…辞書にあるすべての値を返す

• items()…辞書にあるすべてのエントリを返す

24

Iterator

• 何か要素が入っている構造物（コンテナ：containerと呼ばれる）があるときに、
繰返しで要素を取り出せるようにするイテレータ型が用意されている

• iter(構造物)関数を用いる

• 例：drinks = { "紅茶", "コーヒー" , "ジュース" }

 for n in iter(drinks) : print(n) # 要素を表示

• 例：numbers = dict(zip(["壱", "弐", "参"], range(1, 4)))

 for n in iter(numbers) : print(n) #キーを表示

• 辞書の場合には、iterの対象は、キーになる

25

Iteratorクラスの組込み関数
• iter(コンテナ型のオブジェクト)…Iteratorクラスにする

• next(イテレータ)…次の要素を返す

• 使用例：通常は前のスライドのようなfor文で使う

イテレータ = iter(要素を持つオブジェクト)

while True:

 try:

 要素 = next(イテレータ)

 except StopIteration:

 break

 print(要素)

26

構造体としてのクラス
• クラスの定義

‣ class クラス名: pass

‣ 例： class Employee: pass

• クラス名は、通常、大文字始まりで、複合語であれば、そこを大文字にする命名が多い
（Javaの流儀：Pascal Case / Upper Camel Case）

‣ 例：BinaryOperator, SquareMatrix, RawTurtleなど

• Python2からのものや、準原始型に対応するものは、すべてlowercaseにしている場合もある、例：date, datetimeなど

• クラスに属するオブジェクトの生成

‣ クラス名()

‣ 例：Employee()

• 生成したオブジェクトを参照する変数に代入

‣ 変数名 = クラス名()

‣ 例：john = Employee()

27

構造体としてのクラス
• あるクラスに属するオブジェクトのことをインスタンス(Instance)と呼ぶ。オブ
ジェクトは、独自に変数をもつことができる。これをインスタンス変数と呼ぶ

• インスタンス変数を定義する

‣ オブジェクト変数.変数名 = 値の代入

‣ 例： john.name = "John Smith"

• 代入することによって、そのオブジェクトに属するインスタンス変数ができる

28

一般的なクラスの定義
• インスタンス変数（インスタンス属性）とメソッドを持つクラス

class クラス名:

メソッドの定義

• メソッドを含む、クラスの定義の例：
class Binary:

#インスタンス変数としてself.valueを用いる

def setValue(self, n): self.value = (n != 0)
def getValue(self): return 1 if self.value else 0

29

クラスとオブジェクトの関係
• クラス−オブジェクト関係図

30

Class Variable

Instance Variable

Class (Static) Method

Class

Object (Instance)Static Initializer
(Class Initializer) Constructor

Instance Method

Object Initializer

総合的なクラスの作成
• メソッド

‣ コンストラクタ・デストラクタ（self引数あり）

‣ クラスメソッド（self引数なし）

- @classmethodによるもの（cls引数あり）

- @staticmethodによるもの（cls引数なし）

‣ インスタンスメソッド（self引数あり）

• 変数

‣ クラス属性（selfなし）

‣ インスタンス属性（selfつき）
31

コンストラクタ
• オブジェクト生成時に呼び出される特殊メソッド

‣ __init__（ self, パラメータ名)

• 通常はクラス名()のコンストラクタは仮定されている。もし、クラス名（　パラ
メータ名　）のコンストラクタを定義した場合は、上記の仮定が外れる。そのた
め、__init__（ self ）のコンストラクタを定義する必要がある。

• コンストラクタはインスタンスメソッドなので、selfが使える。また、スーパー
クラスのメソッドを呼び出すsuper()も用いることができる

32

コンストラクタの例
class Fraction:

def __init__(self, num=0, denom=1) :
self.numerator = num
self.denominator = denom

number = Fraction(7, 12)
another = Fraction()

33

構造体として属性データをまとめる
• dictを使った場合

employee = { "name":"John", "age": 23, "dept":"sales" }

print(employee["name"], employee["age"], employee["dept"])

• クラス定義とコンストラクタを使った場合

class Employee:

def __init__(self, name, age, depart):

self.name = name; self.age = age; self.depart = depart

employee = Employee("John", 23, "sales")

print(employee.name, employee.age, employee.depart)

34

その他の特殊メソッド
• 特殊メソッドは、言語内部で、様々な場面で
呼び出される

‣ https://docs.python.org/ja/3.8/reference/
datamodel.html

• デストラクタ

‣ オブジェクトが削除されるときに呼ばれる

‣ def __del__(self): で定義

• 文字列化メソッド

‣ print関数などで、オブジェクトを文字列に
変換されるときに呼ばれる

‣ def __str__(self): で定義

‣ __repr__(), __bytes__(), __format__()も定義
することができる

• 演算のためのメソッド

‣ 比較演算子 True/Falseを返す

__eq__, __lt__, __le__, __gt__, __ge__,
__ne__ 各比較演算子に該当

‣ 四則演算子 結果のオブジェクトを返す

__add__, __sub__, __matmul__, __mul__,
__truediv__, __floordiv__, __pow__,
__mod__, __divmod__, __lshift__,
__rshift__, __and__, __or__, __xor__ 各演算
子に該当

35

with文
• with オブジェクト：　ブロック

• ブロック内で、オブジェクトに対しての命令であることが仮定される

• 例：

with cal:
 print(year, month, day) # cal.year, cal.month, cal.day

• with オブジェクト as 省略名：　ブロック

• ブロック内で、オブジェクトを省略名で参照できる

• 例：

with open("data.text", "r") as f:
 print(f.read())

36

with文のためのメソッド
• __enter__(self)と__exit__(self)が用意されていなければならない

• with文に突入するときは、__enter__メソッドが呼ばれる。with文が終了するときは、__exit__メソッドが呼ばれ
る

• 例：

class Tester:

 def __enter__(self): return self

 def __exit__(self, exc_type, exc_value, traceback): pass

a = Tester()

a.name = "Kent"

with a as b:

 b.name = "John"

print(a.name)

37

クラス変数（クラス属性）
• そのクラスに（そのクラスに属するオブジェクトに）共通で１つの値を保持する
ことができる変数を定義できる

• クラス変数には、self修飾子を用いない

• オブジェクトの内部からも、外部からもアクセスするときは、

‣ クラス名.クラス変数名

• でアクセスする。

38

クラス変数の定義
• クラスの中に属性（フィールド）を持つための変数を定義できる。クラス変数と
呼ばれている。

class クラス名:

クラス変数の定義

• クラス変数は、オブジェクトを生成しなくても、クラス外部からクラス名を使っ
て直接アクセスすることができる。

• 例： class Tester:

 sample = "Hello" #クラス変数の定義

 print(Tester.sample)
39

クラス変数での注意点
• クラス定義時において、クラス変数における代入の際に、既出のクラス変数を用いたリスト生成など
は利用することができない（クラス定義が関数定義のスコープを利用して実装されているため）

• 例：

class Allowed: # 単なる参照はだいじょうぶ

a = 42

b = a + 67

class Denied: # リスト生成において参照されている場合

a = 42

b = [a + n for n in range(10)] # リスト生成においてクラス変数aを参照 Denied.aでもだめ

後から代入する分にはOK

Denied.b = [Denied.a + n for n in range(10)]

40

クラスメソッド
• クラス属性やスタティックメソッド・クラスメソッドは、クラスだけが持つこと
のできる変数やメソッドである。

• スタティックメソッド・クラスメソッドでは、特定のインスタンスに依拠してい
るわけではないので、selfは使えない

• スタティックメソッド・クラスメソッドを呼び出すときは、

 クラス名.スタティックメソッド名(パラメータ)
という形で呼び出す。

41

クラスメソッドの種類
• スタティックメソッド

‣ @staticmethodデコレータで始まる（つけ
なくてもOK）

‣ 例：

class Sample:

@staticmethod

def zeroValue(): return 0

 print(Sample.zeroValue())

• クラスメソッド（狭義のPythonのクラスメ
ソッド）

‣ @classmethodデコレータで始まる

‣ 仮引数の最初が、クラス自身を表すオブ
ジェクトclsになっている

‣ 例:

class Sample:

a : int # class variable

@classmethod

def initialize(cls, param):

cls.a = 10

42

クラスメソッド、クラス変数の例
class Color4:

 RED = "red message" # クラス変数

 @staticmethod

 def createBlackColor(): # クラスメソッド（引数なし）

 return "#000000"

 # インスタンスメソッド（コンストラクタ）

 def __init__(self, r, b, g, a) :

 self.red = r

 self.blue = b

 self.green = g

 self.alpha = a

43

プライベートメンバの指定
• クラス内の属性やメソッドをクラス外から見えなくすることができる。情報の隠蔽
化・カプセル化（encapsulation)に用いられる

• 属性の変数、あるいはメソッド名をアンダーバーで始めたものを定義すると、外部か
ら見えなくなる

‣ _（アンダーバー１つで始まる）…内部で使うことを意味するが、外部からも参照可
能

- 例：def _innerMethod(self, param): pass

‣ ＿（アンダーバー２つで始まる）…そのままでは外部からは参照できない。内部で
は、_<クラス名>__<名前＞に置き換えられているので、それを用いれば参照可能

- 例：def __hiddenMethod(self, param): pass

44

property関数
• オブジェクトで使う変数を隠蔽しておいて、その値を参照する関数（getter）、設定する関数（setter）、削除す
る関数（deleter）を指定することができる

• 例：

class C:

 def __init__(self): self._x = None

 def getx(self): return self._x

 def setx(self, value): self._x = value

 def delx(self): del self._x

 x = property(getx, setx, delx, "I'm the 'x' property.")

• c が C のインスタンスならば、c.x は getter を呼び出し、c.x = value は setter を、del c.x は deleter を呼び出す。

• 最後のパラメータは、doc属性のためのパラメータ

45

propertyデコレータ
• property組込み関数をデコレータとして使えば、読み出し専用のプロパティを作れる

• 例：

class Parrot:

 def __init__(self): self._voltage = 100000

 @property

 def voltage(self):

 """Get the current voltage."""

 return self._voltage

• @property デコレータは voltage() を同じ名前のまま 読み出し専用属性の "getter" にし、voltage のドキュメント
文字列を "Get the current voltage." に設定する。

• pがParrotクラスのオブジェクトであれば、p.voltageで値を読み出せる

46

propertyデコレータ続き
• property オブジェクトは getter, setter, deleter メソッドを持っている。これらのメソッドをデコレータとして使うと、対応するアクセサ関
数がデコレートされた関数に設定された、 property のコピーを作成できる。

• 例:

class C:

 def __init__(self): self._x = None

 @property

 def x(self):

 """I'm the 'x' property."""

 return self._x

 @x.setter

 def x(self, value): self._x = value

 @x.deleter

 def x(self): del self._x

47

継承とクラス
• スーパークラスの変数（クラス変数、インスタンス変数）は、サブクラスから利
用ができる

• スーパークラスのメソッド（クラスメソッド、インスタンスメソッド）も、サブ
クラスから利用ができる

• メソッドについては、同じ名前のメソッドを定義することにより、サブクラスで
上書き（overwrite）することが可能になる。

48

継承関係とクラス−インスタンス関係
• 継承関係図

49

Aggregation
Relationship

Object
(Instance)

Object

Object

Inheritance
Relationship

Super Class

Class

Class-Instance
Relationship

クラス・オブジェクト間の関係の確認
• オブジェクトの等価性

‣ a is b # aとbがオブジェクトとして等しいものであるか（同じidを持っているか）

‣ id(a) == id(b) # id組込み関数で、オブジェクトの識別子が返ってくる

• クラスのインスタンス関係の確認

‣ isinstance(a, cls) # aがclsのインスタンスとして所属しているか（サブクラスもあり）

‣ type(a) == cls # typeは、オブジェクトの所属するクラスを返す

• スーパークラスとサブクラスの関係（継承関係）の確認

‣ issubclass(sub_class, super_class) # sub_classがsuper_classのサブクラスになっているか（子孫・祖先なども含む）

‣ type(super(sub_class, sub_class)) == super_classはできない（class 'super'になるので）

‣ sub_class.__bases__属性に、継承されたクラスがタプルで入っている（多重継承のため）ので、各要素をsuper_class
と比較する（ただし内部属性のため、クラス内のメソッドで比較する必要がある

- 例 for bc in sub_class.__bases__: print(bc == super_class)

50

継承と多重継承
• クラス定義の際に、スーパークラスを指定する

• 書式： class クラス名(スーパークラス名):

‣ 例： class Elephant(Animal): pass

• スーパークラスは、複数指定することができる（多重継承：multiple inheritance
と呼ばれる）

‣ 例：class SA(Student, Assistant): pass

• 多重継承の場合、指定されたスーパクラス名の順番に従って、スーパクラスが優
先される

51

super() 組込み関数
• super()とすると、スーパークラスの変数（属性）やメソッドを利用することができる（クラス内）

• 例：

‣ super().method(arg)
- # スーパークラスのmethodを引数argで呼び出す

- インスタンスメソッドからの呼出しの場合は、selfが自動でスーパークラスのメソッドに与えられる

• super(クラス名, オブジェクトまたはクラス名)で指定しても呼び出すことができる

• 例：

‣ super(Rabbit, self).method(arg)
- # Rabbitのスーパークラスのインスタンスメソッドmethodを引数argで呼び出す

‣ super(Rabbit, Rabbit).clsmethod(arg)
- # Rabbitのスーパークラスのクラスメソッドclsmethodを引数argで呼び出す

52

継承を利用した例
• Rabbitクラスは、Animalクラスを継承している

class Animal:

 name = "Animal "

 def jump(self):
 print("Jump: " + Animal.name)

 def shout(self):
 print("WOW: " + Animal.name)

class Rabbit(Animal):

 name = "Rabbit"

 def jump(self):
 print("Jump: " + Rabbit.name)

 #overwrite

 def superjump(self): super().jump()

• 呼出し結果は以下のようになる

Animal().jump() # Jump: Animalと表示される

r = Rabbit() # rは、Rabbitクラスのオブジ
ェクト

r.jump() # Jump: Rabbitと表示される

r.shout() # WOW: Animalと表示され
る

r.superjump() # Jump: Animalと表示される

53

多重継承時の初期化・優先順位
• 右図のような形で多重継承されていた場合、初期化
の呼出しはSelf→A→B→Ancester→B→A→Selfとい
う形で起こる

• プログラム例：

class Ancestor:

 def __init__(self): print("Ancestor initialized.")

class ParentA(Ancestor):

 def __init__(self):

 print("Parent A called.")

 super(ParentA, self).__init__()

 print("Parent A initialized.")

class ParentB(Ancestor):

 def __init__(self):

 print("Parent B called.")

 super(ParentB, self).__init__()

 print("Parent B initialized.")

class Child(ParentA, ParentB):

 def __init__(self):

 print("Child called.")

 super(Child, self).__init__()

 print("Child initialized.")

me = Child()

54

Ancestor

Parent A Parent B

Child

列挙型
• 値は重要ではなく、区別だけをしたいときには、列挙型を用いる

‣ 例：　東西南北　をプログラム中で使いたい

• 列挙型を用いるときは、enumモジュールのEnumを使って、以下のように利用する

• 書式：

‣ from enum import Enum

‣ class 列挙型のクラス名(Enum):

‣ 変数 = 値

• 例：from enum import Enum

 class Color(Enum):
 RED = 1
 GREEN = 2
 BLUE = 3

• 列挙型は、代入や比較が可能になっている

例： x = Color.BLUE

 return Color.RED == x

55

抽象クラス
• 具体的な記述を持たないスーパークラス

• サブクラスは、メソッドを上書きする必要がある

• Pythonでは、abcモジュールで定義されているABCクラスを継承する、あるいは
ABCMetaクラスをメタクラスとして指定すると、抽象クラスになる。

• 例：

from abc import ABC
class MyABC(ABC):
 pass

from abc import ABCMeta
class MyABC(metaclass=ABCMeta):
 pass

56

抽象クラス使用のメソッド
• @abstractmethodデコレータを使って、上書きされる必要のあるメソッドを外形だけを定義する

• 抽象クラスを継承した（実体のある）クラスでは、外形だけ定義されたメソッドの実体を定義
する必要がある

• 例：

from abc import ABCMeta
class Animal(metaclass=ABCMeta):
 @abstractmethod
 def eat(self):
 pass

class Rabbit(Animal):
 def eat(self):
 print("Have a lettuce")

57

モジュールとしての定義
• 1つの.pyファイルに書かれたプログラムは、モジュールと呼ばれる

• 他のPythonのプログラムから、該当のファイルの関数などを呼び出すときは、import文を利用して参照す
ることができる。「ファイル名.py」のファイル名の部分がモジュール名として利用される

• 例： matrix.py → import matrix などを利用して、中の関数を利用可能

• __name__という内部変数（特殊属性）が、"__main__"という文字列になっていれば、そのモジュールから
実行が開始されていることがわかる

• 例： そのモジュールから実行するときだけ、値の入力を要求して、main関数を実行させる

if __name__ == "__main__": # このモジュールから実行されたかどうか

value = input("値を入力して下さい")

main(value) # そのモジュールから実行されたときだけ呼ぶ

‣ importなどで他のモジュールから呼ばれた場合は、この部分は実行されない

58

ライブラリ（パッケージ・モジュール）を使うとき
• いくつかの記述法があり、プログラム中でどの
ような名前で利用できるかの違いがある

• import [パッケージ名.]モジュール名

‣ プログラム中で「モジュール名.名前」で利用
可能

‣ 例：import math; print(math.pi)

• import [パッケージ名.]モジュール名 as 省略名

‣ 「省略名.名前」で利用可能

‣ 例：import math as mt; print(mt.pi)

• from [パッケージ名.]モジュール名 import クラ
スあるいは関数名

‣ 「クラス名あるいは関数名」で利用可能

‣ from math import pi; print(pi)

• from [パッケージ名.]モジュール名 import *

‣ モジュールで定義されているすべての「クラ
ス名あるいは関数名」で利用可能

‣ from math import * ; print(e)

• from パッケージ名 import モジュール名

‣ 「モジュール名.名前」で利用可能

‣ from urllib import request;
request.urlopen(url)

59

モジュールの検索
• import文で指定されたモジュール（ファイル）がどこにあるかを検索する順番が以下に規定されている

1.カレントフォルダ

2.環境変数PYTHONPATHに設定されているフォルダ

3.標準ライブラリモジュールのフォルダ

- 例えば、Mac OS XでPython 3.9の場合は、

/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/
4.サードパーティのライブラリのフォルダ

- 例えば、Mac OS XでPython 3.9の場合は、

/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/

• 標準ライブラリのモジュールと同じ名前でファイルをカレントフォルダに作った場合、そちらの方が優
先されるので、注意する必要がある。例：math.pyなど

60

パッケージの利用
• 複数のモジュール（.pyあるいは.pyc）ファイルを1つのフォルダにまとめておき、そのフォル
ダをパッケージとして利用することができる

• import文では、「パッケージ名.モジュール名」などで参照することができる。

‣ 例：

- from packageA import moduleA
- import packageA.moduleA

• そのフォルダに、「__init__.py」という名前のモジュールがあれば、そのパッケージを
importした際に、最初にこのモジュールが実行されるので、このモジュールに初期化用のプ
ログラムを記述しておく

• パッケージについてもフォルダの検索順序は、モジュールと同様になる
61

