
第５回
箕原辰夫

オブジェクト指向
プログラミング

リスト

• Pythonのリストは、配列とリストの両方の性格を持っている。JavaScriptのArrayに似ている

‣ Javaだと、ArrayListに該当するが、配列にも該当

‣ C/C++だと配列に該当するが、C/C++には、標準ではリストの機能がない

‣ C#では、Listクラスに該当する

• 複数の値を[]で括って持っておくことができる

• それぞれの値は要素と呼ばれるが、Pythonでは要素の型は統一されていなくても良い

‣ 例：[1, 2, 3, 4, 5]

 ["A", 34, "文字列", 45.2e-3]

2

リスト・タプル・文字列と変数

• 変数には、リストを代入することもできる

‣ 例： xlist = [2, 3, 4, 5]
 xtup = (3, 4, "A", 3.4)

• 各要素を取り出したいときには、インデックスとスライスという記法を用いる（詳細は後のス
ライドで説明する）

• １つの要素を取り出したいときは、インデックスは0から始まる

‣ 例： xlist = [3, 4, 5, 6]

 xlist[2] # 5が取り出される

 xlist[0] # 3が取り出される
3

スライス

• リスト[最初 : 終わりの次]

‣ 部分的なリストが生成される

‣ 例：alist[4: 7]

• リスト[: 終わりの次]

‣ 最初の要素の位置は、0と仮定され
る

‣ 例：alist[: 7]

• リスト[最初:]

‣ 指定された最初の位置から、最後
までになる

‣ 例：alist[4:]

• リスト[-インデックス]

‣ 最後の要素の次から、順次インデ
ックスの値が引かれていく

‣ 例：alist[-5], alist[-5:]

4

スライス式

• スライスで複数の要素を取り出すこと
ができる

• 結果は、新たなリストとして返される

• 例：

‣ numlist[2:3] # 1個の要素の場合で
もリストとして返す

‣ numlist[5:9] # ５番目から９番目
の前まで

‣ numlist[: 5] # 最初の５個の要素

‣ numlist[-5:] # 最後の５個の要素

‣ numlist[2:7:2] # ２番目から６番目
まで、１つ飛ばし

‣ numlist[::-1] # 逆順に取り出す

‣ numlist[::-2] # １つ飛ばしで逆順

‣ numlist[0:-1:-2] は動かない

‣ numlist[1:-1][::-2]

5

for文とリスト・タプル・文字列

for文の書式

 for 変数名 in リスト または タプル または 文字列:

 繰返したい内容

[else: 一度も実行しなくても、最後に実行される]

意味

1. リストの各要素が、先頭から順番に、変数に代入される
2. その状態で、「繰り返したい内容」が実行される

3. 最後の要素まで代入されて実行されたら終了

6

for文の例

for n in [4, 3, 2, 4, 6]:

print(n, end= " ")

• 最初に変数nが用意され、最初の要素が代入される（この場合、整数の4）

• print関数が呼ばれ、nの値が表示される

• 最後の要素まで繰返しを続ける

for c in "いろはにほ":

print(c, end= " ")

• 最初に変数cが用意され、最初の1文字が代入される（この場合、"い"）

• print関数が呼ばれ、cの値が表示される

• 最後の文字まで繰返しを続ける

7

異種の型を持つリスト・タプルの場合

• 異種リストの場合は、要素の型を判定するのにtype組込み関数を使う

• 整数はint、実数はfloat、文字列はstr、論理値はbool、複素数はcomplexが返され
る

• 例：

for n in ["John", 23, True, 45.3]:
 if type(n) == int or type(n) == str:
 print(n*2, end=" ")
print()

8

Rangeクラスのオブジェクト

range関数でRangeクラスのオブジェクトが返される

range(終了数) …0 ～ 終了数-1までの羅列

例： range(10)…0 ～ 9までの羅列

range(開始数, 終了数) …開始数～ 終了数-1までの羅列

例： range(1, 10)… 1～9までの羅列

range(開始数, 終了数, 差分)…開始数から始まり、差分が足されていった羅列ができる、差
分が+の場合、終了数より小さい間、差分がマイナスの値の場合は、終了数より大きい間は
羅列が作られる

例： range(1, 10, 2)…1, 3, 5, 7, 9の羅列

　　 range(10, 0, -2)…10, 8, 6, 4, 2の羅列

9

Rangeクラスとリスト・タプル

• rangeクラスのオブジェクトによって、作られる羅列は、list関数によって、リスト
に変換することができる。tuple関数によって、タプルに変換することができる。

• 例：

 list(range(1, 9, 2)) ⇒ [1, 3, 5, 7]
 tuple(range(2, 10, 2) ⇒ (2, 4, 6, 8)

• これを用いて、リストとしても利用することが可能になる

• 例：
 nlist = list(range(1, 9, 2))
 print(nlist[2]) # 5が表示される

10

Rangeクラスの演算

• インデックス式・スライス式

‣ rangeクラスのオブジェクトにもインデッ
クス式、スライス式が適用できる。スライ
ス式の結果は、rangeクラスのオブジェク
トのまま

‣ range(12, 23)[4] ⇒ 16

‣ range(11)[4:6] ⇒ range(4, 6)

‣ range(1, 10)[4:6] ⇒ range(5, 7)

• in / not in 演算子

‣ 7 in range(3, 10) ⇒ True

‣ 12 not in range(4, 12) ⇒ True

• *による字面展開

‣ print(*range(5, 10)) ⇒ 5 6 7 8 9

‣ printの引数以外の場所では、外側に()や[],

あるいは{}が必要

• 加算演算子はない替わりに、itertoolsのchain
関数が使える

‣ from itertools import chain

‣ list(chain(range(2, 4), range(6, 9))) ⇒

[2, 3, 6, 7, 8]

11

Rangeクラスのオブジェクトに適用できる組込み関数

• all / any関数

‣ all(range(-4, 2)) ⇒ False, any(range(

-4, 2)) ⇒ True

• enumerate 関数

‣ list(enumerate(range(3, 5))) ⇒ [(0, 3),

(1, 4)]

• len 関数

‣ len(range(4, 9)) ⇒ 5

• max / min 関数

‣ min(range(3, 10)), max(range(3,
10)) ⇒ (3, 9)

• sorted 関数 → 結果はリストになる

‣ sorted(range(4, 1, -1)) ⇒ [2, 3, 4]

• sum 関数

‣ sum(range(4, 9)) ⇒ 30

• zip 関数

‣ list(zip(range(23, 30), range(4, 7)))
⇒ [(23, 4), (24, 5), (25, 6)]

12

for文とrange

• for文のinの後には、Rangeクラスのオブジェクトを指定することが可能になる

• 書式は、for 変数 in Rangeクラスのオブジェクト:

• 例：

 for n in range(12): print(n) # 0～11まで表示
 for n in range(1, 10): print(n) # 1～9まで表示
 for n in range(5, -2, -2): print(n) # 5, 3, 1, -1を表示

13

for文と無名変数

• ただ単に、何回か繰り返したいとき→無名変数 _ が使える

• 例：

‣ for _ in range(5):
 print("WOW", end=" ")

‣ ⇒ WOW WOW WOW WOW WOW

14

総和を求める・カウントする

総和を求めるための変数を用意する

summation = 0

for i in range(1, 11):

summation = summation + i

print(summation)

特定の値をカウントするための変
数を用意する

count = 0
for n in range(200, 301):
 if n % 3 == 0: count += 1
print(count)

15

総和を求める

ループ変数の値の変化に注目

足し合わされる変数summの変化にも注目する

16

リストのインデックスで要素をアクセスしたい

• 組込み関数のlen関数がリストの長さを返してくれる

• len関数とrange関数を組み合わせる

• 例：

 xlist = [2, 3, 4, 5]
 for i in range(len(xlist)):
 print(xlist[i])

17

enumerate関数とリスト

• 組込み関数のenumerate関数は、リストに対して適用され、そのリストの要素とインデックスの
対（タプル）から構成される新しいリストを返してくれる。

• 例：list(enumerate(["A", "B", "C"]))
→　[(0, 'A'), (1, 'B'), (2, 'C')]

• enumerate関数は、enumerateオブジェクト返してくるので、list, tuple, set, dictでそれぞれの型に
変換する必要がある

‣ enumerate([1, 2, 3]) → <enumerate object at 0x105940ae0>

‣ tuple(enumerate([1, 2, 3])) → ((0, 1), (1, 2), (2, 3))

‣ list(enumerate([1, 2, 3])) → [(0, 1), (1, 2), (2, 3)]

‣ set(enumerate([1, 2, 3])) → {(0, 1), (1, 2), (2, 3)}

‣ dict(enumerate([1, 2, 3])) → {0: 1, 1: 2, 2: 3}

18

enumerate関数とfor文

• enumerate関数を用いて、インデックスと一緒にリストを探索することができるfor文を生成
できる

• 例：for n, value in enumerate(["A", "B", "C"]):
 print(n, value)

• 例：nlist = [12, 23, 34, 45, 56, 67, 78]
　　for i, n in enumerate(nlist):
　　　if n%2==1: nlist[i] = n * 2
 # 結果：[12, 46, 34, 90, 56, 134, 78]

• enumerate(リスト, start=開始番号)で、開始番号を指定できる

19

zip関数とリスト

• 組込み関数のzip関数は、複数のリストに適用することができ、各リストの先頭
から要素の対のリストを生成できる。

• 例：list(zip(['Kobe', 'Kyoto', 'Osaka'], ['神戸', '京都', '大阪']))
 → [('Kobe', '神戸'), ('Kyoto', '京都'), ('Osaka', '大阪')]

• zip関数とfor文を組み合わせて、複数のリストを先頭から探索するようにするこ
とができる

• 例： for en, jp in zip(['Kobe', 'Kyoto'], ['神戸', '京都']):
 print(en, jp)

20

動く設計

初期値と継続条件の設定の仕方による

‣ １回も実行されない
for n in range(3, 0, 10) : print(n)

‣ １回も実行されない
✴ for n in range(3, 10, -4) : print(n)

21

リスト・タプル・集合・辞書をfor文で作る（ジェネレータ式）

• for文を使って初期化されたリストを作成することができる

‣ 書式：[式 for文] あるいは [式 for文 if文] あるいは[式 for文 for文]

‣ 例：[x for x in range(1, 10)] ⇒

 [1, 2, 3, 4, 5, 6, 7, 8, 9]

• このときにif文やif式も利用することが可能

‣ 例：[x for x in range(1, 10) if x % 2 == 0] ⇒

[2, 4, 6, 8]

‣ a = [n if n % 2 == 0 else n*10 for n in range(1, 11)] ⇒ [10, 2, 30, 4, 50, 6, 70, 8, 90,

10]

22

リストをfor文で作る（続き）

• for文とif式を組み合わせた場合

‣ループ変数の値によって、要素の値の計算を変えることができる

‣例：[n if n <= 3 else n+10 for n in range(1, 7)]
 ⇒ [1, 2, 3, 14, 15, 16]

• for文とif文を組み合わせた場合

‣ループ変数の値によって、要素の値の出力を抑制することができる

‣例：[n**2 for n in range(1, 10) if n**2 > 30 and n**2 < 70]
 ⇒ [36, 49, 64]

• for文とfor文を組み合わせた場合

‣周期的な値の変更を要素の値に加味することができる

‣例：[n+m for n in range(5, 20, 5) for m in range(1, 4)]

 ⇒ [6, 7, 8, 11, 12, 13, 16, 17, 18]

23

リストをfor文で作る（更に続き）

• for文とenumerate関数を用いる

‣ 例：[i * n for i, n in enumerate(range(1, 20, 3), start=2)]

‣ ⇒ [2, 12, 28, 50, 78, 112, 152]

• for文とzip関数を用いる

‣ 例：[m * n for m, n in zip(range(1, 20, 3), range(5, 50, 7))]

‣ ⇒ [5, 48, 133, 260, 429, 640, 893]

• for文と整数除算・剰余を用いる

‣ 例：[n//3*6 + n%3 for n in range(12)]

‣ ⇒ [0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20]

24

tuple, dict, setもfor文で作成できる

• 一般にジェネレータ式（generator expression）と呼ばれる

• listの生成

‣ 例：list(n**0.5 for n in [1, 4, 9, 16, 25]) → [1.0, 2.0, 3.0, 4.0, 5.0]

• tupleの生成

‣ 例：tuple(n for n in range(5)) → (0, 1, 2, 3, 4)

• dictの生成

‣ 例：{ n: n**2 for n in range(3, 8) } あるいは dict((n, n**2) for n in range(3, 8)) →

　　{3: 9, 4: 16, 5: 25, 6: 36, 7: 49}

• setの生成

‣ 例：{ n**2 for n in range(3, 8) } あるいは set(n**2 for n in range(3, 8)) →

　　{36, 9, 16, 49, 25}

25

while文とfor文との互換性

while文をfor文で書き直す場合は、ループ変数に一定の値を足したり、引いたりしている場合に
限られる

n=A

while n < B : 文; n += C

→ for n in range(A, B, C): 文

for文をwhile文で書き直す

for n in range(A, B, C): 文

→ n= A

 while n < B: 文; n += C

26

break文

break文に出会うと、一番内側の繰返しのブロックから脱出する

for文やwhile文は、break文で脱出した場合、else句がついていた場合は、そのブロックの実行は
されない

入力のガード（既定値以外の入力をさせないようにする）にもwhile文と共に良く用いられる。

途中だけ処理をしたい場合に使われる

while True:
 A
 if 脱出のための条件式 : break
 B

A→B→ A→B→ A→B→… A→B→A

27

break文と入力のガード

必要以外の値を入力しないようにする

while True:
value = int(input("入力: "))
if value >= 0: break # 0以上なら脱出

print("正の数を入力のこと", end=" ")

‣ while文を抜けた段階では、0以上の値であることが保証されている

28

break文とelse句

• break文で抜けるとelse句は無視される

‣ 例：

for n in range(10):
 print(n, end=" ")
 if n > 7 : print(); break
else:
 print(" 終 ")

29

continue文

• continue文は、次の繰返しにいく

• インデントを深くしない場合に使うことが多い

for _ in range(10):

if 除外する条件 : continue

繰り返す処理

30

pass文

• 何もしないで次の文に制御を移す

• 制御構文や関数の定義で、内容が未定の場合に、pass文を使って、見た目をごま
かすのに使われる

• 例：

for _ in range(10):
 pass # 10回何かをやる予定

def some_function(arg): pass # 中身未定の関数

• あとでpassの部分のプログラムを書き換える
31

assert文とeval関数

• assert文

‣ 書式：assert 式

• 式がPythonの構文規則にあっているかどう
か、および条件式などの場合は、True（または
0以外）に評価されるかどうかをチェックする

• 構文規則にあっていないと、エラーを発生する

• 例：

x = 14
assert x*12
assert x==13 ⇒ AssertionErrorになる

• eval組込み関数

‣ 書式：eval("Pythonの式")

• 文字列中に書かれた、Pythonの式を評価して、
結果を返す

• 例：

eval("x==13") ⇒ Falseに評価される（x=14の
とき）

eval(f"{32*45-56/23:.2f}") ⇒ 1437.57

32

try except文

• 例外（実行時に起こるエラー）を処理するために使われる文

• 書式：
 try: 文またはブロック
 except [式]: 文またはブロック
 [else : 文またはブロック]
 [finally : 文またはブロック]

• tryの文またはブロックを実行する、エラーが起こったらexceptの文またはブロックをする

• exceptの例外ですべて引っ掛からなかった場合は、elseの文またはブロックを実行する

• finallyは、エラーがあってもエラーが起こらなくても、最後に必ず実行する

• 例：

try: ix = 45 // 0
except: ix = -1

33

try except文でエラーを受けとる

• except文では、受け取ったエラーを変数に保存し、表示させることができる

‣ 例：

try:
 value = int(input("Number: "))
except Exception as error:
 value = 0
 print(error)

• その後も実行を続けることが可能となる

34

組込み例外の基底クラス一覧

• BaseException
‣ すべての組込み例外の基底クラスになっている（通常は以下のExceptionの方を使う）

• Exception
‣ システム終了以外の全ての組込み例外の元となっているクラス

• ArithmeticError
‣ 算術例外

• BufferError
‣ バッファエラー

• LookupError
‣ インデックスなどが範囲を超えたとき

• 具象例外
‣ 通常のプログラム実行で起こりうる例外

• OS例外
‣ 実行環境のオペレーティングシステムに依存して起こりうる例外

• 参照：
‣ https://docs.python.org/ja/3/library/exceptions.html

35

raise文

• エラーを送出する文

‣ 書式：raise Exception(文字列)

‣ Exceptionの部分は、BaseExceptionクラスのサブクラスである必要がある

‣ 例：raise ValueError("value is not in the range from 1 to 100")

• try except文の中で受け取った場合は、「from 変数」をつけることができる（この
変数は、except句の中で受け取った変数名を使う）

‣ try:
except Exception as exc:
 raise RuntimeException("Something bad") from exc

36

match文（Python 3.10から）

• Python以降のSwiftやRust, Juliaなどのプログラミング言語に導入されてきたmatch文がPython
にもフィードバックされて使えるように仕様がアップデートされた。

• 基本的には、C/C++言語系のswitch文の発展形になっている。

• 基本文法は以下のようになっている

‣ match 式:

 case 該当する式: ブロック

 :
 case _: ブロック # _は、それ以外のすべてに該当する

‣ 最後の case _:の節がない場合は、何もしない

‣ 該当する式を複数指定する場合は、| で区切る、範囲指定はガードで行なう

37

match文の例（1）

• 基本的なmatch文の例

 match status:
 case 400: return "Bad request"
 case 404: return "Not found"
 case 418: return "I'm a teapot"

m = int(input("Month: "))
match m:
 case 2 | 4 | 6 | 9 | 11:
 print(f"Small moon :{m}")
 case _:
 print(f"Big moon: {m}")

• タプルに対しての使うmatch文の例

 # point は2つの要素から構成

 される (x, y) の形のタプル

 match point:

 case (0, 0): print("Origin")

 case (0, y): print(f"Y={y}")

 case (x, 0): print(f"X={x}")

 case (x, y): print(f"X={x}, Y={y}")

 case _: raise ValueError("Not a point")

38

match文とネストされたパターン

• リストの要素の細かな指定することができる

• 例：

match pointlist:
 case []: # 空リスト

 print("リストにPointがありません")

 case [(0, 0)]: # リストに要素が1つだけで、しかも0, 0

 print("リストに要素が１つだけで、原点を指しています")

 case [(x, y)]: # リストに要素が1つだけ

 print(f"座標が {x}, {y}の1つの要素がリストにあります")

 case [(0, y1), (0, y2)]: # リストに要素が2つだけ

 print(f"リストに2つの要素があり、そのY座標は {y1}, {y2} です")

 case _:
 print("それ以外の要素があります")

39

match文と要素のワイルドカード

• 要素を指定する際に、ワイルドカードの_を利用することができる

• 例：

match three_elemented_tuple:
 case ('warning', code, 40):
 print("A warning has been received.")
 case ('error', code, _):
 print(f"An error {code} occurred.")

• サブパターンをasで変数に代入しておくことができる

• 例：

case ((x1, y1), (x2, y2) as p2): ...

40

match文とガード、範囲指定

• case節の後に、ifをつけて、照合についてガード（制限）を掛けることができる

• 例：

match point:
 case (x, y) if x == y:
 print(f"The point is located on the diagonal Y=X at {x}.")
 case (x, y):
 print(f"Point is not on the diagonal.")

• ガードを用いて範囲指定をすることが可能になっている

• 例：

match value:
 case a if a in range(1, 101): print(f"{a} is within 100")
 case a: print(f"{a} is over 100")

41

