
第６回
箕原辰夫

オブジェクト指向
プログラミング

オブジェクトの生成

‣ 書式：クラス名（生成時のパラメータ)

Tk() … tkinterでウィンドウを作る

Canvas(window) … 指定したウィンドウ上にキャンバスを作る

Font(family="Helvetica")…フォントのオブジェクトを作る

C++ / C#/Java/JavaScript: new クラス名（生成時のパラメータ)

2

オブジェクトを参照する変数

代入の書式

‣ 変数名 = クラス名（パラメータ)

例

‣ window = Tk()

‣ r = range(1, 10)

‣ enums = enumerate(nlist)

‣ canvas = Canvas(window)

‣ font = Font(family="Helvetica")

3

オブジェクトの参照

変数= クラス名（パラメータ）

例：

 window = Tk()
 x = Canvas(window)

4

オブジェクト変数の利用法

メソッド（Method: オブジェクトが保持する関数）を呼び出す

‣ 変数.メソッド名（実パラメータ）

‣ 例： x.create_line(50, 50, 30, 30)
　　 another = a.getInfo()

5

１回限りのオブジェクト

パラメータの引数に使っても良い
‣ c.create_text(x, y, font=Font(family="Times", size= 35), text="Hello")

変数に代入したのと同じ効果がある
‣ timesfont=Font(family="Times", size= 35)
‣ c.create_text(x, y, font=timesfont, text="Hello")

ドット記法も使える
‣ f = Font(family="Times", size= 35)
‣ asc = f.metrics(ascent)

‣ asc = (Font(family="Times", size=35)).metrics(ascent)
‣ asc = Font(family="Times", size=35).metrics(ascent)

6

オブジェクトの自動消去と手動消去

ガーベージコレクタが自動的にやってくれる

明示的にオブジェクトを削除する場合は、del文を使う

del window

7

tkを使って描画する

• from tkinter import * # 標準のGUIライブラリ

• トップのウィンドウを作って配置する

window = Tk()
window.geometry("500x500+100+100") # 小文字のx（エックス）

‣# 幅と高さ、左上の角のデスクトップ上の位置

window.attributes("-topmost", True)
‣# 表示を前面に

• このあと、GUIのコンポーネント（ボタンなど）を動作させるときは、mainloop関数を呼び出す。

mainloop()

8

キャンバスの作成と配置

• 描画用のCanvasをウィンドウ上に作成する

• widthはキャンバスの幅、heightはキャンバスの高さ

‣ c = Canvas(window, width= 500, height=500)
‣ c.pack()で描画を確定させる

• 描画関数は、このキャンバスのオブジェクトへの関数呼出しとして記述される。
• 例：

c.create_line(100, 100, 200, 200)

9

ウィンドウとキャンバスのその他の関数

• ウィンドウ

‣title(ウィンドウのタイトル) # タイトルを設定する

‣geometry("幅x高さ") # 半角小文字のx（エックス）+スクリーン上のx座標+スクリーン上のy座標 で左上の位置を指定可能

‣attributes("-topmost", True) # 前面に出す（出ない場合は、この後Falseにしてからもう一度Trueにする）

‣focus_force() # アクティベートして入力できるようにする

•ウィンドウの幅と高さを求める

‣winfo_width() # ウィンドウの幅を返す

‣winfo_height() # ウィンドウの高さを明けす

‣上記の2つは、実際にウィンドウが描画されて､update() してからでないと求まらない

• キャンバス

‣place(x=左側の開始位置, y=上側の開始位置)　#ウィンドウ内での左上の位置

‣作成時のbackgroundオプション

10

ウィンドウ上の座標系

11

(0, 0) (300, 0)

(0, 200)

y座標
(+方向)

x座標 (+方向)

(120, 80)

tkinterの描画メソッド（１）

• Canvasオブジェクトに対して、描画関数を呼び出す

create_line(x1, y1, x2, y2)
‣ 始点から終点に向けて、線を描く

‣ 始点と終点を取り替えても可能

create_rectangle(x1, y1, x2, y2)

‣ 1番目と2番目は左上の座標

‣ ３番目と４番目は右下の座標
12

オプションの指定

• fill = 色

内部を塗りつぶす色を文字列で指定する

指定できる色の一覧は、以下のサイトを参照

http://www.tcl.tk/man/tcl8.4/TkCmd/colors.htm
16進数3桁あるいは6桁でも指定できる#から始める
例： #f3a ←rgb1桁ずつ #33ffcc ←rgb2桁ずつ

• outline = 色

枠の色を文字列で指定する

• width = 幅

枠の幅（デフォルトは 1.0）を数値で指定する
13

http://www.tcl.tk/man/tcl8.4/TkCmd/colors.htm

RGBカラーモデル

RGBカラーモデルで

‣ #赤成分 緑成分 青成分

14

16進数によるカラー指定

各色の成分指定による生成（加法混色）2桁場合00～ff, 1桁の場合は、0～f

‣ 赤 #ff0000 #f00
‣ 緑 #00ff00 #0f0

‣ 青 #0000ff #00f
‣ シアン #00ffff #0ff
‣ 黄 #ffff00 #ff0
‣ マゼンタ #ff00ff #f0f
‣ 黒 #000000 #000
‣ 白 #ffffff #fff

15

tkinterの描画メソッド（２）

create_oval(x1, y1, x2, y2)

‣ 外接する四角形はcreate_rectangleと同じ

‣ 幅と高さが同じだと正円

‣ 幅と高さが異なると楕円

create_arc(x1, y1, x2, y2, start=開始角, extent=角度差)

‣ 四角形に内接する円を描くのはcreate_ovalと同じ

‣ 開始角度と角度差を360°で指定

‣ style=スタイルで、ARC, CHORD
PIESLICEで指定できる

16

tkinterの描画メソッド（３）

create_line(x1, y1, x2, y2, x3, y3, …)

‣ 1本の線だけでなく、折れ線で連続した線も描画することができる

‣ smooth=Trueオプションで、曲線にすることも可能

create_polygon(x1, y1, x2, y2, x3, y3, …)

‣ create_lineと同じだが、閉包多角形のなので、最低6つのパラメータが必要

‣ 6つで、三角形、２つパラメータが増えるごとに四角形、五角形、六角形と増えて
いく

17

tkinterの描画メソッド（４）

create_text(x, y, オプション…)

オプションは以下のようなものがある

•text="表示するテキスト"

•justify=LEFT / CENTER / RIGHTのいずれか

•anchor=指定したx, yの位置がどこかを示す

通常はCENTERで、NW, N, NE, W, SW, S, SE, Eを指定することができる

•fill="テキストのカラー"

18

Message
NW NE

SW SE

N

S

EW

後からの移動とtkinterの詳細

• 描画する前に後から移動することができる

• 描画メソッドがid番号を返してくるので、その番号とmoveメソッドを使って、x, y方向に移動
できる

• 例：

‣ id = canvas.create_line(100, 100, 200, 200)

‣ canvas.move(id, 50, 50)

• tkinterの詳細

‣ https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/index.html

を参照

19

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/index.html

グラフィックスと繰返し

create_lineによる繰返し

‣ create_line(x1, y1, x2, y2)

縦線（垂直線）は、ｘ座標が等しい

横線（水平線）は、ｙ座標が等しい

20

水平線を使った繰返しと描画

両端のy座標は、繰返しに併せて変えて行く

‣ ループ変数を使う

x座標を変化させて、動きを示す

‣ 両端が同じように変化→平行四辺形、四角形など

‣ 違う形で変化→台形、三角形など

21

その他のグラフィックス・メソッドを
使った繰返し

create_rectangleで、ピラミッドを上から見たような入れ子四角形

22

カラーテーブル

赤と青を変えて行きながら描画

23

補数・逆数を使った繰返し

補数

‣ 定数からループ変数を引く

‣ 100 - 10 * n

逆数

‣ 定数をループ変数で割る

‣ 100 / n

補数を使って、階段状の格子図形を作る

24

タートルグラフィックス

• MIT LabのLOGO言語で開発された描画

25

turtleライブラリ

• Python2からのものに、オブジェクト指向プログラミングとして、拡張されたPython3版がある。

• ライブラリの採り入れ方

from turtle import *
Python2版の使い方

•以下において、nはピクセル数・angleは角度（360度表記）・x, yはそれぞれウィンドウ上のx, y座標を実パラメータとし
て与える

‣前後：　forward(n) | fd(n) | backward(n) | bk(n) | back(n)

‣回転：　right(angle) | rt(angle) | left(angle) | lt(angle)

‣位置指定（座標）：　goto(x, y) | setpos(x, y) | setposition(x, y) | home()

‣位置指定（個別）：　setx(x) | sety(y) | setheading(angle) | seth(angle)

‣位置を返す：pos() | position() | heading() | xcor() | ycor()

‣指定位置までの角度・距離：towards(x, y) | distance(x, y)

26

旧来版turtle

• 描画指定・その他の関数

•描画：circle(radius) | dot(size [, color])

•ペンの上げ下げ：penup() | pendown() | up() | down()

| pu() | pd()
•スタンプ：stamp() | clearstamp() | clearstamps(n)

•描画色指定： color(line color [, fill color]) …colorは、色
名を示す文字列か、rgbの３つ組

https://cs111.wellesley.edu/archive/cs111_fall14/
public_html/labs/lab12/tkintercolor.html

•塗潰し：begin_fill() ～ end_fill()

•その他：　undo() | speed(sp)　… spは0で最高速、10で
高速、1が最低速

•アニメーション省略：tracer(False)…タートルを出さずに
高速（描画がきちんとなされていない場合は、ウィンドウの

サイズをマウスで変えてみる、ただし最後の方は描画されな
い）

•キャンバスサイズの変更： screensize(幅, 高さ)…ただしウ
ィンドウのサイズより大きくしても、ウィンドウのサイズは
変わらず、スクロールバーが表示される

•画面の消去：clearscreen()…タートルも原点に戻される

•ウィンドウの描画ループへの移行：　done()

•クリックしたら終了する描画ループへの移行：exitonclick()

•スクリーンを得る:Screen()

•Screen()._root … 描画ウィンドウ

•Screen()._root.focus_force() … 前面・アクティ
ベート

27

https://cs111.wellesley.edu/archive/cs111_fall14/public_html/labs/lab12/tkintercolor.html
https://cs111.wellesley.edu/archive/cs111_fall14/public_html/labs/lab12/tkintercolor.html

旧来版タートル記述例

• 記述例：

from turtle import *
color("blue", "orange")
begin_fill()
for n in range(6):
	 forward(100)
 right(60)
end_fill()
done()

28

描画例

• 十字

from turtle import *
color("blue")
for n in range(12):

 forward(100)

 right(90 if n % 3 != 0 else -90)

done()

• 色の移り変わり

from turtle import *
tracer(False)
for m in range(128):
 color(f"#{m//8:1x}0{15-m//8:1x}")
 for n in range(4):
 forward(100+m)
 left(89.2)
done()

29

新版のturtleライブラリ

• tkinterとキャンバスとの整合性が図られている

• タートル変数 = RawTurtle(キャンバスオブジェク
ト)

•例：t = RawTurtle(c)

タートル変数に対して、旧版の関数を用いること
ができる

•例：t.forward(34)

タートルの状態を知る関数も用意されている

•position() | pos() … 座標が2つ組みとして返され
る

• xcor() | ycor() … 各座標値が返される

•towards(x, y) … 指定された位置への角度 |

heading()…現在のタートルの角度

•distance(x, y) … 指定された位置までの距離

•degrees(devider) | radians() … 角度指定の変更

キャンバスでは、描画終了まで表示されないの
で、以下のようにして、TurtleScreenでのアニメー
ションを禁止して表示を早める

•ts = t.getscreen()　# 描画スクリーン

•ts.tracer(0) # アニメーション禁止

詳しくは、ドキュメントを参照

•https://docs.python.jp/3/library/turtle.html

30

https://docs.python.jp/3/library/turtle.html

python3版タートル記述例

• tkinterの方のimportを後にする（tkinter

側のmainloop()を利用するため）

• 記述例：

from turtle import *

from tkinter import *

win = Tk()

win.geometry("800x800")

c = Canvas(win, width=800,
height=800)

t = RawTurtle(c)

t.color("red", "blue")

t.begin_fill()

for n in range(6):

	 t.forward(100)

	 t.right(60)

t.end_fill()

c.pack()

mainloop()

31

オブジェクトの作り方

コンストラクタで作る

➡ クラス名(パラメータ)

例：Font(family="Arial")

クラスメソッドから作る

➡クラス名.getInstance()

例：Calendar.getInstance()

他のオブジェクトの関数の戻り値として

➡オブジェクト名.create_クラス名()　あるいは

➡オブジェクト名.getクラス名()

例：canvas.createLine(10, 10, 100, 100)

32

フォントオブジェクト

import tkinter.font as tkf

tkf.Font(オプションのパラメータ)

Font一覧ソフトウェアでフォントを見てみる

• Mac OS X >> FontBook
• Windows >> Font Viewer Plus

33

Advanced Font

フォントの種類

SerifとSans Serif

ProportionalとMonoSpaced

34

ABC Serif

Proportional Font
Fixed Font

ABC

スタイルとサイズ

family="フォントファミリー名"
weight="bold"，weight="normal"

slant="italic"
size=ポイント数, 1 point = 1/72 inch = 0.35mm

35
Times Italic 36pt
Times Italic 30pt
Times Italic 24pt
Times Italic 20pt
Times Italic 18pt
Times Italic 16pt
Times Italic 14pt
Times Italic 12pt
Times Italic 10pt
Times Italic 8pt

Fontオブジェクトを使う

• Fontオブジェクトを作る

‣例：import tkinter.font as tkf
 helve36 = tkf.Font(family="Helvetica",
 size=36, weight="bold")

• Fontオブジェクトを描画時に設定する

‣例：c.create_text(x, y, text="Message",
 font=helve36)

36

使えるFontファミリーの一覧

• tkinter.font.families()
• コンピュータで使えるフォント名の一覧を、文字列のリストとして返してくれる

• 使用例：

from tkinter import *
import tkinter.font as tkf

w = Tk()
families = tkf.families()
for fn in families:
 print(fn)

37

フォント情報オブジェクト

Fontクラスのmetricsメソッドを使って求める

幅については、mesureメソッドを使って求める

38

Hg
stringWidth

Ascent

Descent

Leading

HeightLineSpace

measure

ピクセルサイズを調べる

• フォントオブジェクト.metrics(オプションパラメータ)

‣ オプションパラメータが指定されなければ、すべてが入ったレコードが返される。パラメータは、
次のようなものを指定できる

‣"ascent"：ベースラインからの高さ（ピクセル数）

‣"descent"：ベースラインから下のアセンダーまでの高さ（ピクセル数）

‣"fixed"：0…プロポーショナルピッチフォント、

 1…monospaced フォント

‣"linespace"：全体の高さ（leadingも含む）

•フォントオブジェクト.measure(表示文字列)

‣ そのフォントで表示する文字列の幅のピクセル数を返す
39

ライブラリ（パッケージ・モジュール）を使うとき

• いくつかの記述法がある []内は省略可能

• import [パッケージ名.]モジュール名

‣ プログラム中で「モジュール名.名前」で利用可
能

‣ 例：import math; print(math.pi)

• import [パッケージ名.]モジュール名 as 省略名

‣ 「省略名.名前」で利用可能

‣ 例：import math as mt; print(mt.pi)

• from [パッケージ名.]モジュール名 import クラス
あるいは関数あるいは変数（定数）名

‣ 「クラス名あるいは関数名あるいは定数名」で
利用可能

‣ 例：from math import pi; print(pi)

• from [パッケージ名.]モジュール名 import *

‣ モジュールで定義されているすべての「クラス
名あるいは関数名あるいは定数名」で利用可能

‣ 例：from math import * ; print(pi)

• from パッケージ名 import モジュール名

‣ 「モジュール名.名前」で利用可能

‣ 例：from urllib import request;

request.urlopen("https://www.sfc.keio.ac.jp")

40

https://www.sfc.keio.ac.jp

オブジェクトの属性を使う

• いくつかのクラスのオブジェクトでは、オブジェクトが持つ変数を参照することができる

• オブジェクトが持つ変数のことを、「インスタンス変数」、「オブジェクトの属性」、
あるいは「オブジェクトのプロパティ」と呼ぶ

• 書式：オブジェクト.属性名

• 例：

from datetime import datetime # datetimeクラスを利用

cal = datetime() # オブジェクトを作成

print(cal.year) # year属性

41

日付時刻オブジェクト

datetimeモジュールに入っている

‣ import datetime

calendarモジュールとtimeモジュールもある

‣ import calendar, time

datatimeモジュールのクラス

‣ date　…　日付だけを表す

‣ time　…　時間を表す

‣ datetime　…　日付・時間を表す

‣ timedelta　…　時間差（何時間か）を表す

‣ tzinfo / timezone　…　時間帯を表す

42

日付・時間のためのクラス datetime

• オブジェクトの作り方

‣ from datetime import * をしておく

指定された日時を表すオブジェクト

‣ cal = datetime(西暦年, 月, 日)

実行された瞬間の日時を表すオブジェクト

‣ now = datetime.now()

指定した時間帯の瞬間の日時を表すオブジェクト

‣ zone = timezone(timedelta(hours=0))
‣ zonenow = datetime.now(tz=zone)

指定した時間帯の日時に変換するメソッド（関数）

‣ cal.astimezone(zone)

43

日付時間の指定

日時を指定したオブジェクトの作成

‣ cal = datetime.datetime(西暦年, 月, 日,)

オプションのパラメータ

‣ hour = 時間（0～23）

‣ minute = 分（0 ~ 59）

‣ second = 秒（0 ~ 59）

‣ microsecond = マイクロ秒（0 ~ 999999）

例：

datetime.datetime(2023, 11, 8) # 2023年11月8日0時0分0秒

datetime.datetime(2023, 11, 8, hour=16, minute=30, second=12)　# 2023年11月8日16時30分12秒

datetime.datetime(2023, 11, 8, microsecond=567890) # 2023年11月8日0時0分0秒567890マイクロ秒

44

求めたい要素

以下のようにしてオブジェクトを取ってきている

‣ cal = datetime.datetime(....)
日時は、分解して次のように求められる（整数値）

‣ cal.year … 西暦の年

‣ cal.month …月 1 ~12

‣ cal.day … 月の中の日

‣ cal.hour … 時間 0 ~ 23

‣ cal.minute … 分 0 ~ 60

‣ cal.second … 秒 0 ~ 60

‣ cal.microsecond … マイクロ秒 1000000で1秒

‣ cal.weekday() … 月曜日を0 ～ 日曜日を6

‣ cal.isoweekday() … 月曜日を1 ～ 日曜日を7

45

strftime/strptime関数による文字列との変換

• datetimeクラスのオブジェクトは、strftime関数（メソッド）
で、フォーマットされた文字列に変換することができる（C言語
との互換性）

• 書式：オブジェクト.strftime(フォーマット文字列)

 → フォーマットされた文字列が返される

• strptime関数を用いて、文字列と変換用のフォーマット文字列か
ら、datetimeクラスのオブジェクトを作成することができる

• 書式：datetime.strptime(文字列, フォーマット文字列)

　→ datetimeクラスのオブジェクトが返される

• フォーマット文字列は、以下のような指定子を使うことができる

‣ %y…西暦2桁

‣ %Y…西暦4桁

‣ %m…月2桁

‣ %d…日2桁

‣ %D…%m/%d/%yと同じ

‣ %a…曜日を省略形の英語で

‣ %A…曜日を英語で

‣ %b…月の省略名

‣ %B…月を英語で

‣ %H…時間を24時間形式で

‣ %I…時間を12時間形式で

‣ %M…分（00～59）

‣ %S…秒（00～59）

‣ %p…AMあるいはPM

• 使用例：

cal = datetime(2023, 12, 8, hour=23, minute=35, second=10)

print(cal.strftime("%Y/%b/%d %H:%M:%S"))

2023/Dec/08 23:35:10

aDate = datetime.strptime("3/23/2023 19:05", "%m/%d/%Y %H:%M")

datetime.datetime(2023, 3, 23, 19, 5)

46

時間差の求め方

datetimeモジュールのtimedeltaクラスのオブジェクトを利用する

from datetime import timedelta # クラスを利用

datetimeクラスのオブジェクト同士を引き算すると、timedeltaクラスのオブジェクトになる

day1 = datetime.datetime(2020, 7, 7)

day2 = datetime.datetime(2000, 1, 3)

delta = day1 - day2

timedeltaクラスのオブジェクトでは、days属性で何日間か、secondsで属性で何秒間か（１日のうち）、
microseconds属性で何マイクロ秒か（１秒間のうち）が求められる

print(delta.days,"日")

print(delta.seconds // 3600, "時間")

print(delta.seconds // 60 % 60, "分", delta.seconds % 60, "秒")

47

時間差を作る

• timedeltaクラスのオブジェクトを作成する

‣ timedelta(days=日数, seconds=秒数)

‣ days、secondsは、省略しても良い。その場合は、0と仮定される

• 例：

cal = datetime.now()
delta = timedelta(days=6, seconds=7461)
print(cal + delta)

timedelta(seconds=3600*24*3+ 382) # secondsだけで1日を越える秒数を指定しても良い

→ datetime.timedelta(days=3, seconds=382) # と同じになる。

48

時間計測の仕方

timeモジュールのtime関数を利用する

‣ import time # timeモジュールを使う

‣ start_time = time.time() # 計測開始時time関数で求める

‣ now = time.time() # 現在の時間

•time関数の戻り値には、1970年1月1日0時0分0秒から経過時間（UTC: Universal Time Coordinated世界協定時間）が秒単位で入
る。秒より小さい部分は小数として入る。

時間計測は、開始時の時間を引く

‣ delta = now - start_time # 時間差を求める

‣ seconds = delta // 1 % 60 # 小数以下を削除 0～59の間

‣ minutes = delta // 60 % 60 # 分 0～59の間

‣ hours = delta // 3600 % 24 # 時間 0～23の間

‣ days = delta // (3600 * 24) # 何日か

49

TextCalendar, Calendarクラス

• calendarモジュールのTextCalendarクラスを使う

‣ from calendar import TextCalendar …ライブラリ
を使う準備

• cal = TextCalendar()…まず、オブジェクトを作る、以
下の関数は作られたオブジェクトに対して発行する

‣ formatmonth(year, month, w=2)…その月のカレン
ダーを文字列で返す（wは日付の幅の文字数）

‣ formatyear(year, w=2, m=3)…その年のカレンダー
を文字列で返す（mは横に並べられる月の数）

‣ prmonth(year, month)…その月のカレンダーを表
示する

‣ pryear(year)…その年のカレンダーを表示する

‣ setfirstweekday(weekday) … 0だと月曜始まり、6
だと日曜始まり

• calendarモジュール直属で、TextCalendarと同じ機能
を持つ関数が用意されている

‣ month(year, month, w=2)…文字列で返す

‣ calendar(year, w=2, m=3)…文字列で返す

‣ monthrange(year, month)…(その月の1日の曜日,

その月の最終日)が返される

‣ setfirstweekday(weekday)…何曜日始まりか

‣ prmonth(year, month)…その月のカレンダー表示

‣ prcal(year)…その年のカレンダーの表示

50

with文

• with オブジェクト：　ブロック

• ブロック内で、オブジェクトに対しての命令であることが仮定される、ただしそのオブジェクトのクラス定
義で、__enter__および__exit__メソッドを持っているもののみ使える

• 動かない例：

with cal:
 print(cal.year, cal.month, cal.day)

• with オブジェクト as 省略名：　ブロック

• ブロック内で、オブジェクトを省略名で参照できる

• 動かない例：

with datetime.now() as n:
 print(n.year, n.month, n.day)

51

with文

動く例：ファイルから読込みをする

with open("test.data") as f:

 text = f.read()

 print(text)

 f.close()

52

ファイルからの読込み

• f = open(ファイル名, モード)

‣ モードは、"r"…読み、"w"…新規作成・クリア後上書き

‣ "r+"…更新用に読み、"w+"…更新用に書込み、

‣ "a"…追加書込み, "b"…バイナリモード

‣ Windowsで標準の読込み指定がShift JIS（cp932）になっている場合があるので、そのときは、
encoding="utf-8"を付ける必要がある

• f.read()…テキスト全体を読み込む

• f.readlines()…テキストを改行で区切って１行ずつのリストとして読み込む

• f.readline()…テキストを１行ずつ読み込む

• f.close()…読込み終了

53

ファイルへの書込み

• f.seek(バイトのオフセット)

f.seek(バイトのオフセット, 起点)

• ファイル内の任意の場所に書込み（読込み）位置を移動する

• 起点は、0…ファイルの先頭、1…現在の位置、2…ファイルの最後、起点が1の場
合は、オフセットの値は負の値でも良い、2の場合は通常負の値

• f.write(データ)

• ファイルの現在の位置に、データを書き込む

54

CSVファイルの読み書き

• csvのモジュールだと１次元リストとCSVファイルの１行データを直接読み書きできる。文字列データで、途中に空白が入ってもOKなのが
特徴

• 読込み

import csv

matrix = []

f = open(filename, "r")

reader = csv.reader(f)

for row in reader: matrix.append(row)

f.close()
• 書込み

f = open(filename, "w")

空行が入ってしまう場合は、newline=""を入れる

writer = csv.writer(f)

for row in matrix: writer.writerow(row)

f.close()

55

インターネットからの読込み

• urllib.requestモジュールを利用する

• httpsでのアドレス指定の場合、sslのcertificateを回避する設定を入れる

• readで取り出した内容は、byte文字列になっているため、decode()関数でUnicodeとして解釈させる

‣ 記述例

import urllib.request
import ssl
ssl._create_default_https_context = ssl._create_unverified_context

responce = urllib.request.urlopen("https://www.sfc.keio.ac.jp")
content = responce.read()
responce.close()

lines = content.decode().splitlines()
for i, line in enumerate(lines, start=1):
 print (str(i).zfill(4), ":", line)

56

sqlite3を利用する

• コマンドベースの場合（Mac OS Xのみ）

• 「sqlite3 データベース名」で起動

‣ 例：sqlite3 test.db

‣ そのフォルダにtest.dbというファイルが生成される

• コマンド入力が出てくるので、コマンドを入れる

‣ 例：.help　　→　ヘルプ画面が表示

‣ .quit　　→　終了

‣ .tables　　→　データベース内のテーブル一覧

‣ .open データベース名　　→　そのデータベースを開く

‣ .read SQLファイル名　　→　そのファイルに書かれたSQLを実行する

‣ select * from sqlite_master;　　→　データベースの情報一覧

• sqlite3から使えるSQLコマンドについては、以下のWebページを参照

‣ http://rktsqlite.osdn.jp

‣ https://www.sqlite.org/lang.html

57

Windowsでsqlite3ツールを使う

• www.sqlite.orgにアクセス

• Downloadのタブをクリックする

• Windowsのsqlite-toolsを選んでダウンロードする

• 圧縮ファイルをC:\Program files(x86)のフォルダの下に展開

• コマンドプロンプトで、以下のようにして起動

　　　cd C:\Program files(x86)\sqlite3
 sqlite3.exe C:\Users\ユーザ名\test.db

58

python3からsqlite3を利用する

• pythonをインストールすれば、標準でsqlite3のライブラリがインストールされて
いる

• データベースに接続して、カーソルを作る

‣ 例：import sqlite3

 conn = sqlite3.connect("test.db") # 接続

 cur = conn.cursor() # カーソルを作る

• カーソルに対して、execute()関数を呼ぶと実行ができる

‣ 例：cur.execute("select * from sqlite_master")

59

実行結果の受け取り

• sqlite3では、select文などのSQLの実行結果を、タプルのリストとして返してくる

• for文で１行ずつ受け取る

‣ 例：for row in cur.execute("select * from sample"):

 print(row)

• なお、データの更新や追加、削除などテーブルに変更を加えた場合は、最後にSQLでcommitコマン
ドを発行する必要がある

‣ 例：cur.execute("commit")

• cur.execute関数を使って実行するときは、実行結果が失敗するときに備えて、try except文に入れて
おく必要がある。

60

SQL（sqlite3）の主なコマンド（簡易版）

• テーブルを作成する

➡ create table [if not exists] テーブル名 (

 カラム名　データ型 [, カラム名 データ型 ...])

•データ型には、text, int, num, real以外にもISO標準のデータ型（smallint, char, varchar）なども使える。画像などのBLOB型の
場合には、データ型に何も記述しない

• テーブルにデータを追加する

➡ insert into テーブル名 values (データ値 [, データ値...])

• テーブルのデータを削除

➡ delete from テーブル名 [where 条件]

• テーブルのデータを更新

➡ update テーブル名 set カラム名 = 式 [where 条件]

• テーブルのデータを検索

➡ select カラム名あるいは* from テーブル名 [where 条件]

61

