
第８回

箕原辰夫

オブジェクト指向

プログラミング

整数と実数の違い

0.0-1.0-2.0 1.0 2.0

0-1-2 1 2

Integer(離散数)

Real(連続数)

実数の指数表現と正規化

• 0.000567 ⇒ 5.67 × 10-4 ⇒5.67e-4

• 1230000.0 ⇒ 1.23 × 106 ⇒ 1.23e6

• 0を少なくするように小数点を動かして、

• 仮数 × 基数（10）指数

• 正規化（Normalization）

• 小数点が浮動するので、実数は「浮動小数点数」（Floating Point Number）と
呼ばれる

3

型の変換

• 暗黙の型変換

‣ 整数から実数へ

‣ 実数が式の中に出てくると実数へ自動的に変換

‣ 実数演算（/…実数除算など）が出てくると実数へ自動的に変換

‣ 実数から複素数へ

‣ 複素数が式の中に出てくると複素数へ自動的に変換

• 明示的な型変換

‣ 型変換の関数を使う
4

型変換の関数

• 型変換の関数

‣ int(値) …整数型へ変換

‣ float(値) …実数型へ変換

‣ complex(値) … 複素数型へ変換

‣ str(値) …文字列型へ変換

• 実数に変換したい場合

‣ float(7) ⇒ 7.0

‣ float("34.5") ⇒ 34.5

• 実数を整数に変換する場合（小数部が切り捨て）

‣ int(56.4e5) ⇒ 5640000

‣ int(43.2) ⇒ 43

5

実数の誤差

• 丸め誤差

‣ 有限ビット数で表わすのでどこかで四捨五入や切り捨てが起こる

• 情報落ち

‣ 違う大きさの数を足したり、引いたりしたとき

• 打切り誤差

‣ 指定された桁で表現を打ち切る

‣ 循環小数

‣ 無理数：√２、e, πなど

6

実数の比較

• 誤差を考慮して比較しなければならない

‣ × if x == 0.1: # うまくいかない

‣ epsilon = 0.0001 #誤差許容範囲

‣ if 0.1-epsilon < x and x < 0.1+ epsilon:

7

mathモジュールの定数

• import mathが必要

• math.e…自然対数の底（ネイピア数）

• math.pi…円周率

• math.inf…正の無限大（負の無限大は、-math.infを用いる）

• e = limn→∞ (1+1/n)n

• math.powを使って精度を上げながら求める

n = 1
while n <= 10000000000000:

e = math.pow(1+1.0/n, n)
n *= 10

8

整数との変換

• math.ceil(x)…⎾x⏋　天井関数：大きいか等しい一番小さな整数

‣ 計算結果は整数になる

• math.floor(x)…⎿ x ⏌　床関数：小さいか等しい一番大きな整数

‣ 計算結果は整数になる

• round(x)…統計的四捨五入（ただし、偶数に丸める）、結果は整数になる

• round(x, n)…小数点以下n+1桁で四捨五入

• math.trunc(x)…小数部を切り捨てる、int(x)と等しい

9

三角関数

• math.cos(θ) → x / r
• math.sin(θ) → y / r
• math.tan(θ) → y / x

• math.acos(x / r) → θ (r=1,0～π)

• math.asin(y / r) → θ (r=1,-π/2～π/2)

• math.atan(y/x) → θ (-π/2～π/2)

• math.atan2(y, x) → θ (πを超えるとマイナスで出てくる）

• math.hypot(x, y) → r

10

y

x

r

θ

Radian体系とDegree体系、分秒

• Radianの角度 = math.radians(Degreeの角度)

• Degreeの角度 = math.degrees(Radianの角度)

• 経度、緯度には、Degree角度以外に分、秒を用いる 

　　分…１度の60分の１ 秒…１分の60分の１

11

degree 0˚ 45˚ 90˚ 180˚ 270˚ 360˚

radian 0 π/4 π/2 π 3π/2 2π

対数

• x = ap aは基数 pは指数 64 = 82 math.pow(8, 2)

• p = loga x xの対数 2 = log8 64 math.log8(64) # log8は用意されていない

• 対数は小さなものから大きなものまで表わせる

• 掛け算を足し算にできる log xy = log x+log y

• 割り算を引き算にできる log x/y = log x - log y

• 桁数を求めることができる

• math.floor(math.log10(value) +1) # valueの桁数を求める
12

対数の公式

• 基数を変えるためには、

‣ log10(x) = loge(x) / loge(10)

‣ log2(x) = loge(x) / loge(2)

13

自然対数と常用対数

• math.log(値) …　自然対数

• math.log10(値) …　常用対数

• math.log2(値) …　2を底とする対数

• math.pow(x, n) …　ｘのn乗を求める

• math.exp(n) … e (自然対数の底）のn乗を求める

14

その他の関数

• math.sqrt(x)

‣ xの平方根を求める　　math.pow(x, 0.5)

• abs(x)

‣ xの絶対値を求める abs(-9) ⇒ 9

• math.fabs(x)

‣ xの絶対値を求める math.fabs(-9.8) ⇒ 9.8

• min(list), max(list)

‣ listの中で最小値、最大値を返す  
min(4, 1, 3) ⇒ 1

• math.gcd(a, b)
‣ aとbの最大公約数を求める

15

Python 3.5以降に加わった関数

• isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) … 近似的に等しいかどうか判定する 3.5
より

• comb(n, k) … 組み合わせ数を求める 3.8より

• perm(n, k) … 順列数を求める 3.8より

• remainder(x, y) … 精度の高い剰余 3.7より

• dist(p, q) … p=(x, y)とq=(x, y)の間の距離を求める 3.8より

• tau … τ定数（2π）6.283185307179586 3.6より

16

random関数

• import randomが必要

• random.random()

‣ 0から1未満の乱数（任意の実数）を返す

• random.uniform(a, b)

‣ a以上b以下の乱数（任意の実数）を返す

• random.randint(m, n)

‣ m以上n以下の乱数（整数）を返す

• random.gauss(m, sigma)

‣ gauss分布（正規分布）で平均がm、標準偏差がsigmaの乱数を返す

17

正規分布の乱数

• 一様乱数

• 正規分布の乱数

18

乱数

• nからmまでの値の整数の乱数を作りたい場合

• diff = m - n + 1;

‣ int(random.random() * diff) + n

• 0から100までの成績を乱数で作る

‣ int(random.random() * 101) + 0;

• -10から10までの整数の乱数を作る

‣ int(random.random() * 21) - 10

19

ランダムウォーク

• 現在の位置を憶えておく　cx, cy

• 行く方向を乱数で決める dir 上下左右

• 行く歩数を乱数で決める step

• 行った先の位置を x, yとする

• cx, cyからx, yに線を引く

• x, y に cx, cyを代入して繰り返す

20

mathモジュールの特殊関数

• factorial(n)…nの階乗（正の整数）

• gamma(z)…ガンマ関数（zの階乗：zは複素数）

• gcd(a, b)…aとbの最大公約数（aとbは整数）

• erf(r)…誤差関数

21

mathモジュールの双曲線関数

• 双曲線に対して定義された三角関数

‣ sinh(x)…双曲線正弦

‣ cosh(x)…双曲線余弦

‣ tanh(x)…双曲線正接

‣ asinh(x)…逆双曲線正弦

‣ acosh(x)…逆双曲線余弦

‣ atanh(x)…逆双曲線正接

22

双曲線

ニュートン法

• となるxの値を、以下の 

数式によって漸次的に 
求める方法

• x0は、どのような値でも良い。ただし解が複数あるものは、最初の値によって、
どの解が求められるか決定する。

23

f (x) = 0

xn+1 = xn −
f (xn)
′f (xn)

平方根の求め方

• ニュートン法でも求める

‣ xn+1 = xn - f(xn) / f ’(xn)

• 平方根の場合

‣ f(x) = x2 - n　

‣ f’(x) = 2x　

‣ xn+1 = xn - (xn2 - n) / 2xn

‣ 　　= xn / 2 + n / 2xn

24

バビロニアの粘土板 YBC 7289 （紀元前1800-

1600年頃）

2の平方根の近似値は60進法で4桁、10進法では
約6桁に相当する。1 + 24/60 + 51/602 + 10/603

= 1.41421296...。(Image by Bill Casselman)

テイラー展開

• 三角関数のテイラー展開の公式

• 有限回の計算で求める

summ, factorial =0.0, 1
for n in range(100) :

summ += (1 if n%2 == 0 else -1) / factorial *
math.pow(x, 2*n+1)
for f in range(2*(n+1)+1, 2*n+1, -1): factorial *= f

25

階乗

• n ! = 1×2×3×…×n

• Σx=1n x = 1+ 2 + 3 + … + n

• Πx=1n x = 1× 2 × 3 × … × n

• sin x = x - 1/3! x3 + 1/5! x5 - 1/7! x7

26

数値積分

• 四角形で近似する

• 台形で近似する

27

グラフを描く

• 最大値と最小値の位置がどれくらいになるか

28

拡大・縮小率

• y = f(x)のときの計算式

• xの範囲を考える

‣ xが動く範囲（定義域）：-100～100

‣ x3の値の範囲（値域）:-1000000～1000000

• 拡大・縮小率は、最大値のときの 

「定義域/値域」になる。

‣ 100/1000000 = 0.0001

29

ウィンドウの幅と高さ

• 幅→winfo_width()で求めることができる

‣ centerx = win.winfo_width()/2
• 高さ→winfo_height()で求めることができる

‣ centery = win.winfo_height()/2

• ウィンドウの幅に合せたいとき

‣ x方向の拡大率　centerx / 最大のx値

‣ y方向の拡大率　cetenry / 最大のy値

30

折れ線での近似

• 折れ線近似アルゴリズム

• 前に計算した座標を覚えておく

31

(x, y)

(lastx, lasty)

曲線の表現形式

• 陽関数形式

‣ y = f(x)

‣ 例: y = x2 + 4x + 3

• 陰関数形式

‣ f(x, y) = 0

‣ 例：x2 + y2 = r2

• パラメトリック形式

‣ 媒介変数tを使う（0～1あるいは0～2π）

‣ x = f(t), y = g(t)

‣ 例：x = r cos(t), y =r sin(t)

32

パラメトリック曲線の描画

• アルゴリズム

• 媒介変数tを使って、x座標とy座標を求める

• deltaは、１回あたりの進み具合

• n回座標を求めて、線を引く

• 繰返しを始める前に t = 0のところのx, y座標を求めておく 

lastx, lastyに入れておく

• 毎回tをdelta分だけ進めて、x, y座標を求める

• 線をlastx, lastyからx, yに引く

• lastx, lasty = x, y (次回の繰返しに備える）
33

円の描画

• 三角関数で角度を変えながら描く

34

r

t

y = r * sin(t)

x = r * cos(t)

正n角形

• 正n角形と正円

‣ 正n角形→(n→∞)→正円

• 正n角形と円周

‣ 正n角形の一辺の長さ a

‣ 半径 rとする

‣ lim n→∞ a * n = 2πr

35

リサージュ図形

• １周するだけでなく、sinとcosの角度の変化比率を変えて、何周もさせる

36

リサージュでのxとｙの動き

• 正円の場合

‣ ｘの動き：１周している

‣ ｙの動き：１周している

• リサージュの場合

‣ xの動き：ｎ回振動している

‣ yの動き：m回振動している

• オシロスコープでは、２つの入力の周期（周波数）の比率がリサージュ図形で表
現

37

螺旋

• 角度を変えるときに、半径も変えてゆく

38

係数の求め方

• アルキメデスの螺旋

‣ r = c * θ

‣ c = r / θ = 最終的な半径 / (2π×回転数)

• 対数螺旋

‣ r = ecθ

‣ c = log(r) / θ = log(最終的な半径) / (2π×回転数)

• Lituus螺旋

‣ r = a / 　θ=0 → r=∞

‣ a = 最終的な半径 /

θ
2π

39

薔薇曲線

 • r = sin 2θのとき、曲線はXに似た形となる。
 • r = sin 3θのとき、曲線はYに似た形となる。
 • r = cos 2θのとき、曲線は+に似た形となる。

40
r = sin(θ×n/d)

課題

• 外トロコイド曲線のうち１つ

• 内トロコイド曲線のうち１つ

• 一つ以上を描画するプログラムを提出のこと

• tkinterのライブラリを使って描くこと

• ファイル名は、Assign02.pyにて

41

グラフ処理アプリケーション

• Mac OS Xの場合は、Grapherが標準で添付

• Windowsの場合はFunction View, Microsoft Mathematics（旧製品）, あるいは、
Word・OneNote用のMicrosoft Mathematics Add-inを使用

• 定積分の計算を数値積分で行なっている

• Grapherは、数式の微分形、積分形を持つことができる

42

https://microsoft-mathematics.jp.uptodown.com/windows
https://www.microsoft.com/ja-jp/download/details.aspx?id=17786

