
Swift によるプログラミング教育について

箕原辰夫

千葉商科大学政策情報学部

（慶應義塾大学環境情報学部非常勤講師）

CIEC PC Conference 2020 Online

ALLPPT.com _ Free PowerPoint Templates, Diagrams and Charts

発表概要

•非常勤講師として勤める慶應義塾大学藤沢湘南キャンパス
（総合政策学部および環境情報学部）での担当科目

•講義名「オブジェクト指向プログラミング基礎」

• 2019年秋学期１コマの授業でSwiftを使ったプログラミング教
育の講義を行なった。その内容の紹介

• Swiftのプログラム記述方法の特徴を紹介

• Swiftによるプログラミング教育の意義と問題点について、特
に、Pythonを用いたプログラミング教育との比較から考察

2

科目の位置付け

•科目名「オブジェクト指向プログラミング基礎」

•慶應義塾大学の湘南藤沢キャンパス（SFC）にある社会系の総合政策学部と情報系の環境
情報学部の主に2年次以降の学生を対象とした科目

•両学部の学生は、1年次に必修の科目として、「情報基礎1」を春学期週1コマ2単位、
「情報基礎2」を秋学期週1コマ2単位で開講されている。この科目では、2019年度までは
JavaScript, HTML, CSSなどを学生は学んでいる。なお、2020年度からは、Pythonを学ぶこ
とに変更されている。

•「オブジェクト指向プログラミング基礎」では、週1コマ2単位として春学期・秋学期同
じ内容で担当している。なお、秋学期に担当した2コマの同名の科目のうち、1コマは
Python、もう1コマはSwiftをプログラミング言語として扱うようにシラバスを構成した。

• iPhone/iPad向けのアプリケーション開発を将来行ないたいと考えている学生の需要はあ
るだろうと推測した。

3

各回の講義内容

•基本的に、プログラミング言語
を学ぶ基礎科目としての講義内
容を踏襲している

• Swift特有の記述の仕方のバリエ
ーションが多くて、その部分で
足を引っ張られてしまった

•到底、クラス定義までは辿り着
けなかった→「基礎」がついて
いない次の科目が必要

•アプリケーション開発の部分
は、授業回とは別の回を1回だ
け設けて、新しいSwift UIにつ
いて授業を行なった

4

授業回 実際に授業で扱った内容
第1回 開発環境の導入とオブジェクトモデルの説明
第2回 Swiftの型とリテラル
第3回 文字列と構造的なリテラル
第4回 ターミナルへの入出力とオプショナル型
第5回 if文による条件分岐
第6回 switch文による条件分岐・その他の制御文
第7回 while文とfor文による繰返し
第8回 範囲指定とfor文
第9回 その他の制御構文（break文, continue文）
第10回 関数定義
第11回 整数論の関数・再帰関数
第12回 Swift特有の関数呼出し
第13回 クロージャ・ジェネリック関数と内部関数
第14回 配列と典型的な操作
第15回 配列と高階関数・2次元配列

講義の課題内容

•完全数を素数とメルセンヌ数から高速に求める問題

‣ アルゴリズムによって高速に解が得られることを体感させる

‣ Swiftでは、整数は64bit符号付きの表現になっているので、そこまでの完全数
しか求められない

•入力された整数を素因数分解する問題

‣ 配列リストを返す関数の定義が必要

• floor関数とceil関数を定義する問題

‣ Swiftの数学関数は、昔ながらのC言語の<math>ライブラリベースになってい
て、正規のドキュメントに細かな仕様は書かれていない

•英語を単語分解して、単語ごとに日本語訳に変換する問題（簡単な語順の入れ替え
も含む）

‣ 辞書構造を利用して、単語の日本語訳を引き出す必要がある
5

学生の受講前の状況

• 2019年度までは、「情報基礎」で学ぶJavaScript/HTML/CSSの
扱いはWebのマッシュアップのためのツールとして学んでい
るに過ぎない

•プログラミング教育としては科目設計されていない状態であ
った。そのため、授業としては、プログラミングをほぼ経験
してこなかった学生を対象に再教育する必要性があった

• Swiftでアプリケーションを開発してきた学生もいたが、基礎
プログラミング教育を受けてこなかったため、総じてアルゴ
リズムをプログラムに落とし込むのには慣れていない状態

6

学生の受講・開発環境

•学生の手持ちのMacBook Air/Proで受講する（2019年度までは湘南藤沢キャンパスで
は標準の環境）

• Swiftの開発環境であるXcodeは、Mac OS Xでしか動かない、Xcodeは1GB以上あるの
で、授業開始前にダウンロード・インストールをしてもらった

• Swiftのインタープリタ自体は、Mac OS X以外にもLinux/Ubuntu, CentOSで稼働させる
ことができる（今回はSAの学生以外はすべてMac OS X）

• Xcodeは、プログラムごとに１つのプロジェクトを作成しなければならないために、
授業の標準環境としては、使用を避けた

• Swiftのインタープリタと、標準的な開発環境として、古くからMacでは用いられてい
るプログラミング用のテキストエディタであるBBEditを利用した。VSCodeの利用は、
準備時間がなくて使用を避けた

• Swiftインタープリタは、シェル（ターミナル）から起動可能
7

Swiftの特徴

• Mac OS Xで稼働するアプリケーション、iOS（iPhone/iPad）で稼働するアプリケーショ
ンの標準開発プログラミング言語

•コンパイラだけでなく、インタープリタも利用することができる

• swift.orgという団体で、一般にも公開されている（Windows版はない）

• NextStepからのObjective-Cのライブラリをまだ引摺っているところがある（Objective-C

は記号だらけの記述しにくい最悪の言語であった）

•最初は、Java言語に似た設計であったが、版が2.0→3.0→4.0と進むに従って、Pythonなど
の先進のプログラミング言語の要素を採り入れてきた

• Apple Computerの製品なので、過去の製品との互換性をかなぐり捨てており、最新の5.0

版以降では、3.0や4.0までの記述方法ではエラーになってしまい、コンパイルできない

•過去にCIECのPCCでも3.0から4.0に置き換わるときに授業で採用して、劇的に変わったの
で教えた内容が使い物にならないという発表が、このセッションであった

8

参考としたテキストと授業スライド

• Swiftが2019年後半に5.0～5.1版になったことによって、ほとんどそれまでの日本語
のテキストは利用できなくなってしまった。

•特に、4.0版よりも前の版で書かれているテキストは、ほとんど使い物にならなかっ
た（エラーになってしまう）

• Apple Computerおよびswift.orgから出されている“The Swift Programming

Language”のテキストだけが頼り（WebとiBookで閲覧可能）

•荻原剛志氏の『詳解 Swift 第4版』は非常に参考になったが、5.0版以降に対応した改
訂版が出たのは、授業後半ぐらいだった

•作成した授業スライドは、一般で観れるようにしている（ただし、途中までしかで
きていない）

‣ https://web.sfc.keio.ac.jp/~minohara/lectureslide/swift

9

授業講評

•もともと、Swift 4.0でアプリケーション開発をしていたので、4.0版までの文法の知識
があったが、5.0版で動かない部分が出てきたので、そのキャッチアップに追われる

• GUIのライブラリもUIKitから、Swift UIに授業期間直前に替わってしまい、そのキャ
ッチアップに追われる

•前のコマの4時限がPythonでの授業で、次の曜日にJavaScriptの授業だったので、教員
側が少し混乱する

•学生の受講者は33名で、実質出席者は23～25名程度

•毎回の授業開始直後に小テストをやっているのが好評、学生は自分の理解度が確かめ
られたとのこと

•授業中に作ったプログラムは、LMSで授業後に公開した

•クラス定義まで進めなかったが、もともとのプログラミング基礎の科目がなかったの
で、プログラミングの基礎が学べたと学生から評価がされた

10

Swiftの変数の型指定

• Swiftは、コンパイル言語としての特徴も兼ね備えているので、実行前（コンパイル時）に
おける型推論が可能になっていなければならない

•インタープリタ言語でもあるので、C++/Javaよりは型指定を厳格に指定しなくても、ある
程度、柔軟に型推論してくれる

•例：

let message: String = "Hello" // 型指定あり

let answer = "Hi" // 型推論によって省略

• Xcodeの開発環境では、執拗に、「これ変数なのか！？おまえの使い方だと後で代入がな
いから、定数にしておくべきじゃないのか！」と注意してきて、コンパイルさせてくれな
い（Swiftインタープリタは警告表示するだけ）

‣ 定数の場合：let value = 10 // これ以降代入ができない

‣ 変数の場合：var value = 10
11

オプショナル宣言（オプショナルを伴う型）

• nilによる変数に値がない状態を許すオプショナル宣言

•オプショナル宣言を伴う型指定は、型名?という形で記述する

•オプショナルは、変数にラップが掛かった状態と考えられる。これを解凍するには、!演算子を
用いる（not演算子とは異なり、式あるいは変数名の後に付ける）

•関数の戻り値として、オプショナル型の値を戻すものが多い（端末からの入力や型変換など、値
がないときの対応のため）

• C#にも導入されていると思うが、Swiftほどは頻繁に使われていない

•例：

var line: String? = readLine() // オプショナル型

var optvalue: Int? = Int(line!) // オプショナル型

let value = optvalue! // 解凍して評価

let value = Int(readLine()!)! // 1行で同じ内容を記述
12

制御文での変数代入

• if, while, switch文などの条件式の部分にlet節を伴ったオプショナル型の代入式（束縛：bindingと呼ばれてい
る）を混入させることができる

•代入結果がnilの場合は、falseという形で評価される

•例：

var s : String = "1234" // 文字列の値

if let num = Int(s) { print(num!) } // 変換できた場合

else { print("\(s) は整数に変換できません") }

• switch文のcaseのところで、変数に代入ができる

•例：

let anotherPoint = (2, 0)
switch anotherPoint {
case (let x, 0): print("on the x-axis with an x value of \(x)")
case (0, let y): print("on the y-axis with a y value of \(y)")
case let (x, y): print("somewhere else at (\(x), \(y))")
}

13

制御文での修飾句

•制御文で代入式（束縛）が導入されるときに、更に、代入された変数についての制
限をwhere修飾句で入れることができる

•例：

let yetAnotherPoint = (1, -1)
switch yetAnotherPoint {
case let (x, y) where x == y:
 print("(\(x), \(y)) is on the line x == y")
case let (x, y) where x == -y:
 print("(\(x), \(y)) is on the line x == -y")
case let (x, y):
 print("(\(x), \(y)) is just some arbitrary point")
}

14

関数の位置仮引数の指定

•関数の定義の際の仮引数は、キーワードとしても利用されている。関
数を呼び出すときは、キーワードを指定して実引数を与える必要があ
る。

•位置だけの仮引数を利用した場合は、アンダーバー（_）を付ける必
要がある（仮引数の変数名の前に空白を入れて、その前に指定する）

•例：

func square(x: Int) -> Int { return x * x }
// 呼出しは、square(x: 23)のようにして呼び出す

func square(_ x: Int) -> Int { return x * x }
// 呼出しは、square(23)のようにして呼び出す

15

クロージャ

•クロージャは、Pythonでいうところの無名関数として高階関数に対して引数として渡される関数
であるが、Javaの無名メソッドのようにクロージャの中にいろいろ記述できることや、クロージ
ャ自体への引数などの省略記法があり、プログラムの可読性を低くしている。

•戻り値がある場合でも、その記述の仕方に多くのバリエーションがあり、どの記述に遭遇しても
同じ動作をすることを認識しなければならない。

•例：

let names = ["Chris", "Alex", "Ewa", "Barry", "Daniella"] // 文字列の配列

names.sorted(by: { (s1: String, s2: String) -> Bool in return s1 > s2 }) // 省略無し

names.sorted(by: { (s1, s2) in return s1 > s2 }) // 型推論による省略

names.sorted(by: { (s1, s2) in s1 > s2 }) // returnの省略

names.sorted(by: { $0 > $1 }) // 簡略引数名の使用

names.sorted(by: >) // 比較演算子だけの指定
16

ジェネリック関数

•ジェネリック関数は、C++/Javaのテンプレートを引き継いだ形になっていて、複数の型に対し
て同じような処理を関数で行ないたいときに、Tなどの型名で型自体を引数にする方式

•下記の例では、型は明示的に渡されていないが、自動的に型推論によって、TにIntが代入され
ている

•また、下記の例では仮引数にinoutの修飾語があるが、これは「参照渡し」を意味している。そ
のため、実引数である、2つの変数には、参照渡し（C言語でのポインタ・C++言語での参照）
を示すための&演算子が使われている

•例：

func swapper<T>(_ a: inout T, _ b: inout T) {
 let temp = a; a = b; b = temp
}
var (x, y) = (12, 56)
swapper(&x, &y)

17

言語構造の違い

• Swiftの基本的な言語構造は、PythonとJavaの中間的なもの、あるいはその両者の
特長を取り込んだものになっているため、これまで両方のプログラミング言語を
教えていた経験からは、基本構造の共通性から教えやすいものになっている。

•しかしながら、Swiftは型指定が必要なコンパイル言語を基本としていること、お
よび省略記法の多さから、プログラミング初修者の学生にとっては非常に覚えに
くい言語であると考えられる。

• Pythonも最近の版では、C/C++/Swiftが持っているような代入式も入ってきてお
り、全体的には両者の書き方は似通ってきているが、記述能力の高さについて
は、SwiftはPythonに劣る。その大きな原因は、型指定の部分にある。

• Pythonにおいて型指定（アノテーション）はあくまでもインタープリタに対する
型ヒントであり、間違っていても動く。 x : int = "ABC"でもOK

18

ジェネリック関数について

• C++/Java/Swiftのジェネリック関数よりも、インタープリタベ
ースでPythonの実行時に型が対応していれば実行できる形で
記述できる多相型の方が記述しやすい

‣ Swiftの場合

func square<T: Numeric>(_ x: T) -> T { return x * x }
‣ Pythonの場合

def square(x): return x * x

19

構造型（シーケンス型）についての統一記法

• Pythonは、タプル・文字列・リスト（配列）にスライス記法とインデックス記法が統一して使える。演算子も同じ意味を持っている（加
算、整数との乗算、in演算子など）。関数も同じものが適用できる。

•例：

numlist = [12, 23, 34, 45, 56] # list
print(numlist[2], numlist[1: 3])
alphabet = "ABCDEFGHIJKLMN" # string
print(alphabet[2], alphabet[1: 3])
tup = (12, 23, 34, 45, 56) # tuple
print(tup[2], tup[1: 3])

• Swiftでは、C++/Javaと同様に、文字列には、そのままでは、配列と同じ記法（範囲指定）が使えない。面倒な型変換をする必要がある。
タプルには、範囲指定が使えない。

•例：

let numlist = [12, 23, 34, 45, 56] // list
print(numlist[2], numlist[1...3])
let alphabet = "ABCDEFGHIJKLMN" // string
print(alphabet[2], String(alphabet[String.Index(encodedOffset: 1) ... String.Index(encodedOffset: 3)]))
let tup = (12, 23, 34, 45, 56) // tuple
print(tup.2) // index only

20

クロージャについて

• Swiftのクロージャでは、Javaの無名メソッドのようにクロージャ内
に延々とプログラムが記述できるのは可読性を下げることになる。

• Javaも無名クラスや無名メソッドを高階関数の実引数として、延々
と記述でき、どこまでが、その内容かわかりにくくしていた。複雑
な処理をする関数は、無名ではなく、命名するべきであろう。

• Pythonの無名関数は、「lambda 仮引数: 返す値の式」の簡潔なラ
ムダ式（関数プログラミング言語でいうところの）になっている。

•それ以上のことをするのであれば、通常の関数として定義するべき
であり、いたずらに可読性を低くするのは良くない。

21

インタープリタについて

•インタープリタは初等プログラミング教育に必須であり、Javaのように簡
単な計算結果を得るためだけに公開クラスを作成し、その中にクラスメソ
ッドであるmainメソッドをシグネチャがあう形で定義しなければならない
のは馬鹿げている。

•例えば、簡単な「45 * 67」のような計算を行なうときに、インタープリタ
では、その数式をそのまま記述すれば、計算結果を表示してくれる。Swift

やPythonのインタープリタでは、この当たり前の環境が実現されている。

•初等プログラミング教育では、このようなインタープリタの環境からプロ
グラミングを始めるべきである。C/C++/Javaにおけるプログラムの実行の
前提となる公開クラスやmain関数などの定義などは、クラス・関数の概念
を学んでから記述するべきである。

22

おわりに

•近年は、Rust, Goなどのコンパイル型プログラミング言語なども人気である
が、それはC/C++/Java言語でプログラミング基礎教育を受けて来た人達が先
進的な要素が加わった言語として用いているのではないかと思われる。

• Python, JavaScriptなどは、インタープリタ型のプログラミング言語である
が、プログラミング基礎教育においては、1行からプログラムが記述でき
る、あるいは計算式による電卓機能を持ったインタープリタ型のプログラミ
ング言語から始めるべきである。

• Pythonが全世界的に標準的なプログラミング基礎教育言語になっているの
とは対照的に、Swiftは所謂Apple Computer系のアプリケーションを作るた
めの言語として位置づけられているが、インタープリタを基本とすればプロ
グラミング基礎教育に使えなくもないことがわかった。

23

