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1 はじめに
白井著「形式意味論入門」 [1] の第 5章「 UG (普遍文法)の概要」 (pp.44–79)を整理して

再構成する. 「白井」の普遍文法の解説は数学的にはやや冗長であり,また統語規則が言語を
決定することの証明など,理論構成上必要な証明も省略されている. そこで本節は,普遍文法
の意図を汲み,その枠組を再構成し,必要な証明を与える. 容易な部分は,演習問題とした. 普
遍文法の意義については白井 [1] のすぐれた記述を参照のこと. 本ノートは普遍文法の枠組の
簡潔で正確な記述に専念する. 記法については弥永他 [2] に従ったので,白井 [1] の記法とは
異なる部分がある. 読み合わせるときは注意が必要である.

なお，モンタギュの普遍文法は自由代数の概念を知っていると理解しやすいだろう．さら
に文脈自由文法と構文木の概念を知っているとさらに容易だろう．どちらも基礎的な概念で
あり，普遍文法理論は文脈自由文法と構文木を代数的に一般化したものであると考えられる．
さて,白井 [1] によれば,モンタギュの統語理論 (構文理論)のアイデアは,大きく次のよう

にまとめられるだろう.

1. 可能な表現の全体はひとつの代数系を成す.

2. 統語範疇は,その代数系を集合とみたときの部分集合を表す.

3. 統語規則は,それらの統語範疇の生成原理 (規則)である.

4. 翻訳とは代数系の間の写像である.

5. 解釈とは,同じ種類の代数系の間の準同型である.

6. 解釈と翻訳を関数として結合したものは,ある広い条件のもとに,ふたたび解釈とする
ことができる: 翻訳 +解釈⇒解釈.

PTQでは,英語の断片をいったん内包論理式に翻訳し,それを可能世界モデルで解釈する.

PTQのこのような間接的な意味解釈の戦略の理論的妥当性は,代数系の理論から保証される.

本稿の目標は,統語規則が言語を決定することの証明,および,翻訳は準同型であることの
証明である. いずれも，定式化が済めばあとはむしろルーチンワークである．
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2 代数系, 準同型
モンタギュの普遍文法 (UG)の枠組みの数学的理解に必要な代数系のことばの準備をする.

Nで自然数全体を表わす. 便宜上 0も自然数として数える: N = {0, 1, 2, . . .} .空集合は ∅で
表す.

定義 2.1 (シグニチャ) 集合 Ω と関数 ν : Ω → N の順序対 Σ = (Ω, ν) をシグニチャと呼ぶ.

Ωの各元 ω を関数記号あるいは演算記号とよび, ν(ω)を ω の次数とよぶ. とくに次数 0の関
数記号を定数記号ともいう. シグニチャ (Ω, ν)は,便宜上, ν が省略されて,たんに Ωと書く:

Σ = Ω.

以下の例において,記号であることを強調するために,記号の上に点 (·)を付ける.

例 2.1 算術演算 (加法と乗法)のシグニチャ:

ΣN = (
{
0̇, 1̇, +̇, ∗̇} ,

{
(0̇, 0), (1̇, 0), (+̇, 2), (∗̇, 2)

}
).

例 2.2 論理演算のシグニチャ:

ΣB = (
{
Ṫ, Ḟ, ∧̇, ∨̇, ¬̇, →̇}

,
{
(∧̇, 2), (∨̇, 2), (¬̇, 1), (→̇, 2), (Ṫ, 0), (Ḟ, 0)

}
).

例 2.3 文字列の結合演算のシグニチャ: ΣS = ({ε̇, ·̇} , {(ε̇, 0), (·̇, 2)}).

X を集合, n ≥ 0とする. 直積 Xn から X への関数はX 上の (n-引数)演算とよぶ. 次数は
nであるという. n = 0の場合, Xn はある特定のシングルトン {∗}を表すと規約する.

定義 2.2 (代数系) 3-組 A = (A,Σ, ρ)を Σ-代数系とよぶ. ここで Aは集合であり,代数系 A
の台と呼ばれる. Σ = (Ω, ν) はシグニチャ, ρ は Ω の各演算記号 ω に A 上の n-引数演算
ρ(ω) : An → Aを割り当てる関数である. nは関数記号 ω の次数である: n = ν(ω).混乱がな
いかぎり, ρは省略される.さらにシグニチャ Σまでも省略して,たんに Aと書くこともある:

A = A.

例 2.4 N = (N,ΣN, ρ)は代数系をなす. ただし, ΣN は上で定義したシグニチャであり, ρは
次の条件をすべて充たすとする:

1. ρ(0̇) = 0 ∈ N, ρ(1̇) = 1 ∈ N.

2. ρ(+̇) : N× N→ N, ρ(+̇)(x, y) = x + y (足し算).

3. ρ(∗̇) : N× N→ N, ρ(∗̇)(x, y) = x× y (かけ算).
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例 2.5 (ブール代数) ({T, 1} ,ΣB , ρ)は代数系である. ここで, ΣB は上で定義した論理演算の
シグニチャであり, ρは論理演算記号 ∨̇,∧̇,¬̇,→̇をそれぞれ次の論理演算として解釈するもの
である: 論理和 ∨,論理積 ∧,否定 ¬,含意→.

例 2.6 (文字列の結合代数) ΣS = ({ε̇, ·̇} , {(ε̇, 0), (·̇, 2)}). A を ‘アルファベット’ 文字列のす
べてと空列からなる集合とする. 文字列 x, y ∈ Aに対して xの右に y をならべて得られる文
字列 xy を作る演算を ‘ ·’ と書く: ρ(·̇) : (x, y) 7→ x · y, ρ(·̇) = (·), ρ(ε̇)を空列 εと対応させよ
う.この ΣS-代数 (A,ΣS , ρ)は,よく知られた,いわゆる文字列の結合代数である.演算とは意
識しないほどありふれた演算である. この文字列の結合代数は,結合律 (x · y) · z = x · (y · z)

が成り立ち, εが単位元である (εx = xε = x). さらにいうと,この文字列代数は, Aから生成
される自由単位半群, free monoidといい数学のいたるところに現れる代数系の例である.

定義 2.3 (準同型 (homomorphism)) Σ = (Ω, ν) をシグニチャ, A = (A,Σ, ρ) と
B = (B,Σ, µ) を Σ-代数系とする. 関数 h : A → B は, 各演算記号 ω ∈ Ω と任意の
元 a1, . . . , an ∈ Aについて等式

h(ρ(ω)(a1, . . . , an)) = µ(ω)(h(a1), . . . , h(an))

を満たすとき,代数系 Aから代数系 B への (Σ-)準同型とよばれる. ここで nは ω の次数と
する: n = ν(ω). 準同型は同じ種類すなわち同じシグニチャを持つ代数系の間で定義される
概念である.

問題 2.1 Nを上で定義した代数系とする. 自然数を二倍する演算 x 7→ x + xは代数系 Nから
Nへの準同型であることを確認せよ.

問題 2.2 文字列の結合代数から,自然数の加法代数への準同型を定義せよ.

以下,混乱のない場合,演算記号とそれが表す演算 (=関数)を区別しないで書くことがある.

命題 2.1 A, B, C をみっつの Σ-代数系とする. ふたつの準同型 f : A → B, g : B → C の関数
結合 g ◦ f はふたたび準同型である: g ◦ f : A → C.

証明 演習問題とする.

関数結合を表わす ‘◦’ は,混乱が無い限り省略される.

命題 2.2 準同型の結合は結合律を充たす: A,B, C,D が代数系で, f : A → B, g : B → C,

h : C → D が準同型ならば (h ◦ g) ◦ f = h ◦ (g ◦ f).

証明 演習問題とする.
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一般に代数系 Aの台の上の恒等関数 (=写像)を idA で表す.

問題 2.3 A, B を同種の代数系, f : A → B を準同型とする.

1. idA, idB はそれぞれ A, B からそれ自身への準同型である.

2. idB ◦f = f ◦ idA = f.

準同型 h : A → B が全単射のとき,同型とよび,ふたつの代数系は h のもとで同型である
という. 同型なふたつの代数系は同じものとみなせる.

定義 2.4 (部分代数) Σ = (Ω, ν) をシグニチャ, A = (A,Σ, ρ), B = (B,Σ, µ) を Σ-代数とす
る. 次の条件を充たすとき, B を Aの部分 Σ-代数という:

1. B ⊆ A.

2. 各 ω ∈ Ω について µ(ω) は ρ(ω) の B への制限 (restriction)である. 　すなわち,

ρ(ω) ¹ B = µ(ω).

定義 2.5 (項 (term)) Σ = (Ω, ν)をシグニチャ, X を ‘変数’ の集合とする. X ∩Ω = ∅と仮定
する.

1. 各元 x ∈ X は項である.

2. ω ∈ Ωが n ≥ 0次の関数記号で, t1, . . . , tn が項ならば ω(t1, . . . , tn)も項である.

3. 以上のみが項である.

項の全体を T (Σ, X)と記す. ν(ω) = 0の場合 ω() = ω と書くことがある.

注意 2.1 この定義では,厳密には, T (Σ, X)∩X = ∅と T (Σ, X)∩Ω = ∅は保証されない. 以
下でもこの性質は仮定しない.

定義 2.6 (解釈) 一般に,代数系 (A,Σ, ρ)と変数割り当て η : X → Aが与えられたとする. 項
t ∈ T (Σ, X)の解釈 [[t]]ρ,η ∈ Aを帰納法で次のように定義する.

1. tが変数すなわち X の元ならば [[t]]ρ,η = η(t).

2. t = ω(t1, . . . , tn)ならば [[t]]ρ,η = ρ(ω)([[t1]]ρ,η, . . . , [[tn]]ρ,η).

定数記号の解釈は, n = 0の場合に,すなわち次数が 0の演算記号として含まれている.

定義 2.7 (統語代数) Σ = (Ω, ν) をシグニチャ, A = (A,Σ, ρ) を Σ-代数とする. 任意の
α, β ∈ Ω, (a1, . . . , an) ∈ An (n = ν(α)), (b1, . . . , bm) ∈ Am (m = ν(β)) について,

ρ(α)(a1, . . . , an) = ρ(β)(b1, . . . , bm) ならば α = β, m = n, a1 = b1, . . . , an = bn とな

2-3



るとき,Aを統語代数という.

言い換えると, Σ-代数 A が統語代数であるための必要十分条件は, ρ(ω) は単射かつ,

image(ω) ∩ image(ω′) = ∅ (ω, ω′ ∈ Ω, ω 6= ω′)が成り立つことである. つまり統語代数と
は，演算式での表現が一意であるような世界である．

a ∈ Aとする. 次数が 1以上の任意の ω ∈ Ωに対して, a 6∈ image(ρ(ω))であるとき, aを
原子的 (atomic)とよぶ.

問題 2.4 一階述語論理の基礎項の全体 T = T (Σ, ∅) (Herbrand宇宙,あるいは Herbrand代数
と呼ぶ) は統語代数であることを確認せよ. すなわち, 3-組 (T, Σ, ρ) は ρ(ω)(t1, . . . , tn) def=

ω(t1, . . . , tn)と演算を定義することにより統語代数をなす.

問題 2.5 Aを Σ-代数とし, Σの定数関数記号の解釈から生成されるとする. そのとき,次は同
値である.

1. Aは統語代数である.

2. Aは,自由 Σ-代数 T (Σ, ∅)と同型である.

この問題により,統語代数はその名のとおり構文木のような対象から成っている世界であ
ることが確認された.　つまり，統語代数は自由代数である．

問題 2.6 自然数と足し算 (+) のなす代数系は, 統語代数ではない. (ヒント: 4 = 1 + 3 =

2 + 2 = · · · )

問題 2.7 ブール代数系は統語代数ではない.

問題 2.8 h : A → B を任意の写像とする. 次の条件 (1)と (2)は互いに同値である.

1. h : (A,Σ, ρ) → (B,Σ, µ)は準同型である.

2. 任意の項 t ∈ T (Σ, X) と割り当て η : X → A について, h([[t]]ρ,η) = [[t]]µ,hη. ここで
hη は関数結合である．

次に,多項式演算を導入する. 形式的にみれば,一階述語論理式の項の定義とほとんど同じ
である. 違うところといえば,変数のかわりに射影を使うところぐらいである. 与えられた Σ-

代数 A = (A,Σ, ρ) (Σ = (Ω, ν))を固定する.

定義 2.8 (定数関数) 0 ≤ nとする. A上の次数 nの演算で,つねに一定の値 (a ∈ A)とる関数
を定数関数とよび記号Ka,n で表す.

定義 2.9 (射影) 0 ≤ n, 1 ≤ i ≤ nとする. 任意の (a1, . . . , an) ∈ An に対して ai を対応させ
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る, A上の次数 nの演算を射影とよび記号 πi,n で表す.

定義 2.10 m,n を自然数として, g : Am → A, f1, . . . , fm : An → A を次数 n の演算の系と
する. 任意の (a1, . . . , an) ∈ An を (f1(a1, . . . , an), . . . , fm(a1, . . . , an)) ∈ Am に対応させる
関数を 〈f1, . . . , fm〉と書く: 〈f1, . . . , fm〉 : An → Am.

関数結合 g〈f1, . . . , fm〉は An から Aへの写像であり,定義により,任意の (a1, . . . , an) ∈
An を, g(f1(a1, . . . , an), . . . , fm(a1, . . . , an)) ∈ Aに対応させる.

定義 2.11 (多項式演算) Σ-代数 (A, ρ) を与えられた代数系とする. Poly(A) を次の条件を満
たす最小の集合とする.

(1) すべての定数関数を含む.

(2) すべての射影を含む.

(3) すべての ρ(ω)を含む. (ω は Σの演算記号)

(4) 関数結合に関して閉じている.

Poly(A)の元を A上の多項式演算とよぶ.

Σ-代数系 Aに対して Poly(A)が存在することはルーチンである.

問題 2.9 Σ-代数系 Aに対して Poly(A)が存在することを示せ.
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3 言語, 普遍文法, 解釈, 翻訳
3.1 言語

定義 3.1 (無曖昧言語) Σ = (Ω, ν)はシグニチャ,A = (A,Σ, ρ)を Σ-統語代数系とする. 5-組
D = (A, X, δ, S, z)は次の条件を充たすとき,無曖昧言語という.

1. z ∈ X.

2. δ : X → pow(A).

3. S は (ρ(ω), 〈x1, . . . , xn〉, y) なる形の元からなる集合である. ここで, ω ∈ Ω, xi ∈ X

(1 ≤ i ≤ n), y ∈ X, ν(ω) = n.

4. 任意の x ∈ X と ω ∈ Ωについて, δ(x) ∩ image(ρ(ω)) = ∅.
5. Aの部分代数 A′ の台が ⋃

x∈X δ(x)を包含するならば A = A′.

ここで，x 6= y でも δ(x) ∩ δ(y) =とは限らないことに注意．X の元を統語指標名, δ(x)の
元を範疇 xの基本表現, S の元を統語規則と呼ぶ. Aを無曖昧言語 D の底代数という.

ここで，規則 (ρ(ω), 〈x1, . . . , xn〉, y)は ρ(ω)(x1 × ldots× xn) ⊆ y はという集合制約を表し
ている．
無曖昧言語の定義から,基本表現は原子的であり,かつ統語代数は基本表現からシグニチャ

が表す関数により生成されることがただちにわかる.

定義 3.2 (派生統語規則) D = (A, X, δ, S, z) を無曖昧言語とする. ここで, Σ = (Ω, ν),

A = (A,Σ, ρ)とする. 次の条件を満たす最小の集合 Qを Q0 とする.

1. S ⊆ Q.

2. (Ka,n, 〈x1, . . . , xn〉, y) ∈ Q (n ≥ 0, x1, . . . , xn, y ∈ X, a ∈ δ(y), Ka,n は上出の定数
関数.)

3. (πi,n, 〈x1, . . . , xn〉, xi) ∈ Q (n ≥ 0, x1, . . . , xn ∈ X, πi,n は上出の射影 (1 ≤ i ≤ n))

4. x1, . . . , xn ∈ X, y1, . . . , ym ∈ X, Fi (1 ≤ i ≤ n) の次数は共通の n, m は G

の次数, さらに, 1 ≤ i ≤ n ならば (Fi, 〈x1, . . . , xn〉, yj) ∈ Q であり, 最後に
(G, 〈y1, . . . , ym〉, z) ∈ Q とする. このとき, (G〈F1, . . . , Fm〉, 〈x1, . . . , xn〉, z) ∈ Q.

G〈F1, . . . , Fm〉の次数は nであることに注意.

Q0 の元を D の派生統語規則とよぶ.
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Q0 の存在の証明も容易なルーチンである. (4条件をすべて満たす集合 Qの全体の共通部分
を Q0 とおけばよい).

問題 3.1 Q0 が存在することの詳細を省略せずに確かめよ.

定義 3.3 (曖昧化言語) 次の条件を充たすとき, 3-組 L = (D, R, L)を言語という.

1. Lは集合である.

2. D は無曖昧言語である.

3. R ⊆ A× L.ここで Aは D の底代数の台とする.

Rを曖昧化関係という.

3.2 有意表現

この小節では,無曖昧言語が,有意表現を決定することを定式化して証明する. 数学的には
ルーチンなので,詳細は省略する.

Σ = (Ω, ν)をシグニチャ,A = (A,Σ, ρ)を Σ-統語代数, D = (A, X, δ, S, z)を無曖昧言語
とする. これらの記号を固定する. γ : X → pow(A)を統語範疇割り当てという. 無曖昧言語
D は統語範疇割り当てを決定する. それを以下述べる.

D の派生統語規則の全体集合を S̄ と書き, x ∈ X に対して,

MED(x) def=
{
p(a1, . . . , an) | (p, 〈x1, . . . , xn〉, x) ∈ S̄, ai ∈ δ(xi) (1 ≤ i ≤ n)

}

と定義する. MED(x)を言語 D における範疇 xの有意表現とよぶ. 直観的には,文法 S が生
成する範疇 xの表現全体を表している.

MED は統語範疇割り当てである. そのいくつかの性質を調べよう.

任意に統語範疇割り当て γ に対する作用 Φを次の式で定義する. x ∈ X を任意の統合範疇
として,

Φ(γ)(x) def= {F (a1, . . . , an) | (F, 〈x1, . . . , xn〉, x) ∈ S, ai ∈ γ(xi) (1 ≤ i ≤ n)}

統語範疇割り当ての間の関係 ≤を, γ ≤ γ′ を γ(x) ⊆ γ′(x) (x ∈ X)で定義する. 統語範疇
割り当て全体が ≤に関して完備な半順序構造を成すことも明かである. tΓで統合範疇割り
当てからなる集合 Γの上限を表す.

命題 3.1 Φは単調である. すなわち, γ ≤ γ′ ならば Φ(γ) ≤ Φ(γ′).
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命題 3.2 Φは「連続」である. すなわち, Φ(
⊔∞

i=0 γi) =
⊔∞

i=0 Φ(γi).

Φ(γ) = γ なる γ を Φの不動点とよぶ.

命題 3.3 MED は Φの,≤の意味での最小不動点である.

定義 3.4 (Lの解釈) 記号は上のとおりとする. L = (D, R, L)を言語とする. 次の条件を充た
す順序対 (B, f)を Lの解釈という.

1. B は Σ-代数,すなわち,Aと同種である.

2. f :
⋃

x∈X δ(x) → B.ここで B は代数系 B の台.

定義 3.5 (Lの意味割り当て) (B, f) を言語 L = (D, R, L) の解釈とする. f の拡張 g が準同
型 g : A → B のとき, g を解釈 (B, f)により定まる Lの意味割り当てという.

命題 3.4 (B, f)を言語 L = (D, R, L)の解釈とするとき,解釈 (B, f)により定まる Lの意味
割り当てはユニークに存在する.

証明 演習問題.

Σ = (Ω, ν), Σ′ = (Ω′, ν′)をシグニチャ,A = (A,Σ, ρ)を Σ-統語代数系,A′ = (A′,Σ′, ρ′)

を Σ′-統語代数系,D = (A, X, δ, S, z),D′ = (A′, X ′, δ′, S′, z′)を無曖昧言語とする.

定義 3.6 (翻訳ベース) 無曖昧言語 D,D′ を上のとおりとする. 次の条件を充たす 3-組 T =

(g, H, j)を D から D′ への翻訳ベースという.

1. g : X → X ′.

2. j :
⋃ {δ(x) | x ∈ X} → MED′ は D の基本表現 w ∈ δ(x) (x ∈ X)を D′ の有意表現

j(w) ∈ MED′(g(x))に対応させる関数である.

3. H は A上の演算 ρ(ω)と同じ次数を持つ A′ 上の多項式演算 Hω を対応させる関数で
ある.

4. g(z) = z′.

この定義によれば，もし, (ρ(ω), 〈x1, . . . , xn〉, y)がDの統語規則ならば (Hω, 〈g(x1), . . . , g(xn)〉, g(y))

は D′ の派生統語規則である. D と D′ を上と同じとする. 翻訳ベースから翻訳が決まること
を証明しよう.

命題 3.5 翻訳ベース T = (g, H, j)が与えられると,次の条件を充たす写像 h : A → A′ がユ
ニークに存在する.
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1. w ∈ MED(x)ならば h(w) ∈ MED′(g(x)).

2. j ⊆ h.

3. h(ρ(ω)(a1, . . . , an)) = Hω(h(a1), . . . , h(an)).

証明 容易である. 演習問題とする.

(g, H, j)を翻訳ベースとする. そのとき,D′ の底代数 A′ = (A′,Σ′, ρ′)として, µ(ω) = Hω

(ω ∈ Ω)とおけば, (A′,Σ, µ)は Σ-代数系を成す. そして,翻訳ベース (g, H, j)から上の命題
によって決まる写像 hは, (A,Σ, ρ)から (A′,Σ, µ)への Σ-準同型であることも,同じく上の
命題が示している.

以上の応用として,中間言語を経由する意味解釈を「正当化」しよう. D′ の解釈が与えられ
ているとしよう. まず,その解釈により誘導される意味割り当てを準同型 h′ とおく. D′ の統
語代数 A′ は上に述べたように,各演算記号 ω ∈ Ωを Σ′-代数 A′ に関する同じ個数の引数を
持つ演算と解釈できた. したがって,すでに代数系の説明ところで注意したように, h′ は Σ-準
同型とみなすことができる. Σ-準同型の関数結合はやはり Σ-準同型である. ゆえに関数結合
h′hも Σ-準同型である. よって,意味割り当ての定義により, h′hは無曖昧言語 D の意味割り
当てである. すなわち,翻訳による間接的な意味割り当てに対して直接意味割り当てが構成で
きた. 言語の翻訳における中間言語方式の正当性に対する理論的な説明といえよう.

問題 3.2 解釈と翻訳の結合がまた解釈になるというこの最後の注意において,多項式演算あ
るいは派生統語規則の概念の導入がどのように効いているかを指摘せよ.

普遍文法,解釈,意味割り当て,翻訳の定式化はほとんど無曖昧言語の場合に尽きている. 曖
昧化言語に対するこれらの概念の定式化は,無曖昧言語のそれぞれをもとに,ごく当たり前に
定義される. ただし,ひとつの有意表現の解釈は,一般にひとつとはかぎらない. 一つの表現が
二つ以上の解釈を持ち得る.

問題 3.3 　上で定義した言語 DN に対して,解釈 (N , ∅)で定まる意味の計算は，我々が良く
知っている算術式の評価そのものであることを確認せよ.

問題 3.4 曖昧化言語の解釈,意味割り当て,翻訳を定式化せよ.

問題 3.5 文脈自由文法とそれが生成する言語を曖昧化言語として再定式化せよ.

問題 3.6 モンタギュの PTQの理論の構成が,普遍文法とその翻訳理論の例であることを確認
せよ.
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