Applications of an Entangled Quantum Internet

Conference on Future Internet Technologies
Seoul, Korea
June 20, 2008

Rodney Van Meter (Keio) (rdv@sfc.wide.ad.jp)
Byung-Soo Choi (Ewha Woman’s University)
Outline

• Quantum Key Distribution (QKD)
• Extending QKD: switching and trusting
• Quantum Repeaters
• What would a *distributed* quantum system be good for?
• What problems do we have to solve to get there?
What's a Qubit?

|0> = |0>
= |1> = |1>

A qubit has two states that can be 0 and 1, such as horizontal and vertical polarization of a photon, or up and down spin of an electron.

What is this?
= |0> + |1>

A qubit can be in a superposition of both states at once!
Quantum Key Distribution

• “Tamper-evident” generation of shared random numbers
• Ideal use: generate bit stream for one-time pad
 – Mostly, too slow for that
• Use as Diffie-Hellman replacement
• Still requires classical authentication
Quantum Key Distribution

• Basic use is <150km, dedicated point-to-point fiber, no amplifiers
• Can be optically switched & multiplexed w/ other data
• Longer distance requires:
 – trusting intermediate nodes, or
 – entanglement-based quantum repeaters
• Everything but repeaters in actual use now (thanks, Chip Elliott!)
Putting It All Together

IKE and IPsec

QKD Protocols

VPN / OPC Interface

Authentication
Privacy Amplification
Error Correction
Sifting
VPN / OPC Interface

Authentication
Privacy Amplification
Error Correction
Sifting
VPN / OPC Interface

Traffic in the Clear

QKD Photons

Source Suite

Detector Suite

IKE

SPD

SAD

Ethernet Device Driver

Ethernet Device Driver

Ethernet Device Driver

Ethernet Device Driver

IKE

SPD

SAD

Ethernet Device Driver

Ethernet Device Driver

Ethernet Device Driver

Ethernet Device Driver

Traffic in the Clear

Create Key

Use Key

slide from Elliott, BBN
The DARPA Quantum Network

BBN
Private Enclave
QKD Endpoint
QKD Switch

Harvard
Private Enclave
QKD Endpoint
QKD Switch

BU
Private Enclave
QKD Endpoint
QKD Switch

Dark Metro Fiber
Lab Fiber
Conventional Ethernet

slide from Elliott, BBN
Going the Distance

• Longer distance requires:
 – trusting intermediate nodes, or
 – entanglement-based quantum repeaters

• Quantum repeaters are *not* amplifiers

• Repeaters use teleportation

• Teleportation requires entangled states known as Bell pairs
Network Link Technology (Qubus)x

- Coherent optical source (laser)
- Transceiver qubit in node 1
- Waveguide
- Transceiver qubit in node 2
- Homodyne detector
- Millimeters to kilometers

1) Start with an EPR pair, and the qubit to be sent
2) Entangle locally at the source
3) Measure both qubits at source

4) Transmit classical results to destination
5) Local operations recreate original qubit

Quantum Repeater Operation

Station 0 Station 1 Station 2

Bell State Measurement

Called *entanglement swapping*. Fidelity declines; you must *purify* afterwards.
Nested Entanglement Swapping

Station 0 Station 1 Station 2 Station 3 Station 4

level 0

level 1

level 2

freed qubits

Destination
Repeater Protocol Stack

<table>
<thead>
<tr>
<th>Application</th>
<th>End-to-End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Entanglement (PE)</td>
<td>Distance=1 Only quantum!</td>
</tr>
<tr>
<td>Entanglement Control (EC)</td>
<td>Different Distances</td>
</tr>
<tr>
<td>Purification Control (PC)</td>
<td>Repeated at</td>
</tr>
<tr>
<td>Entang. Swapping Ctl (ESC)</td>
<td></td>
</tr>
<tr>
<td>Purification Control (PC)</td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td></td>
</tr>
</tbody>
</table>

Van Meter et al., IEEE/ACM Trans. on Networking, Aug. 2009 (to appear)
Four-Hop Protocol Interactions

Van Meter et al., IEEE/ACM Trans. on Networking, Aug. 2009 (to appear)
What about *Distributed QC*?

- Two types: those that use entanglement, and those that don’t
- Quantum key distribution can be done either way
- Entanglement can be either a *digital* resource, or a *gyroscopic* reference
Long-Distance Entanglement: Digital Uses

- Quantum Key Distribution
- Distributed leader election
- Same as classical distrib. systems: connect
 - People
 - Machines
 - Data/databases
 ...that are in distant locations
Gyroscopic (Physical) Uses

• Entanglement can also be used to improve precision of measurements
 – Phase/timing
 – Directional information
• Better atomic clocks
• Quantum imaging
Gravity Waves?

GW detector using “squeezed” states. Squeezed states are non-classical, but not entangled; can they be created using entanglement? Does long-distance entanglement help?

From Goda et al., Nature Physics, 2008.
Problems to Solve

• Well, repeaters don’t work yet... (QKD does)

• **Lots** of networking problems:
 – Routing of “messages”
 – Resource management in networks
 – Protocol design
 – Network Coding (Net. Info. Flow)
 – Effective use of wide-area, large-scale entanglement
Routing

Simple.
...but we don’t yet know the cost metric.
A<->B & C<->D want to talk.

Remember, it’s a distributed computation.

Worse, fragile quantum memory means there is a hard real time component.

==>requires circuit switching???
(bottleneck likely is memory per node)
Notes:
MyHalfPurified sends a "PurFail" when it receives "Abort", because they've crossed in the network. "Discard" transitions not detailed. All states can discard, send a "Discard" message, and go back to "Uninitialized" (in EC layer). Epoch gets incremented, and all old msgs discarded after that. "Abort" with an old epoch should be responded to with "Discard", I think.
I think there are still one or two holes in the coordination between the purifying and sacrificed partners.

Legend:
r: received message
e: local event
s: message sent
a: local action
Conclusions

• Entangled Quantum Internet will be buildable (eventually)
• Digital applications include quantum key distribution, leader election, simple connection of distributed resources
• Gyroscopic uses include possible “Big Science” projects like gravity wave observatories
• ...and there are lots of fun networking problems before we get there
http://www.sfc.wide.ad.jp/aqua/
with thanks to
Chip Elliott,
Kohei M. Itoh, Thaddeus Ladd,
Kae Nemoto, Bill Munro,
Gerard Milburn, C. Walker, Min Yun